Super $(a,d)$-$C_3$-antimagicness of a Corona Graph
A simple graph $G=(V(G),E(G))$ admits an $H$-covering if $\forall \ e \in E(G)\ \Rightarrow\ e \in E(H')$ for some $(H' \cong H )\subseteq G$. A graph $G$ with $H$ covering is an $(a,d)$-$H$-antimagic if for bijection $f:V\cup E \to \{1,2,\dots, |V(G)|+|E(G)| \}$, the sum of labels of all...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Ptolemy Scientific Research Press
2018-12-01
|
Series: | Open Journal of Mathematical Sciences |
Subjects: | |
Online Access: | https://openmathscience.com/super-ad-c_3-antimagicness-of-a-corona-graph/ |