Machine learning for cluster analysis of localization microscopy data
The characterization of clusters in single-molecule microscopy data is vital to reconstruct emerging spatial patterns. Here, the authors present a fast and accurate machine-learning approach to clustering, to address the issues related to the size of the data and to sample heterogeneity.
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2020-03-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-020-15293-x |