Pathogenic variants in glutamyl-tRNAGln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder

Abstract Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNAGln). mt-tRNAGln is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA ami...

Full description

Bibliographic Details
Main Authors: Marisa W. Friederich, Sharita Timal, Christopher A. Powell, Cristina Dallabona, Alina Kurolap, Sara Palacios-Zambrano, Drago Bratkovic, Terry G. J. Derks, David Bick, Katelijne Bouman, Kathryn C. Chatfield, Nadine Damouny-Naoum, Megan K. Dishop, Tzipora C. Falik-Zaccai, Fuad Fares, Ayalla Fedida, Ileana Ferrero, Renata C. Gallagher, Rafael Garesse, Micol Gilberti, Cristina González, Katherine Gowan, Clair Habib, Rebecca K. Halligan, Limor Kalfon, Kaz Knight, Dirk Lefeber, Laura Mamblona, Hanna Mandel, Adi Mory, John Ottoson, Tamar Paperna, Ger J. M. Pruijn, Pedro F. Rebelo-Guiomar, Ann Saada, Bruno Sainz, Hayley Salvemini, Mirthe H. Schoots, Jan A. Smeitink, Maciej J. Szukszto, Hendrik J. ter Horst, Frans van den Brandt, Francjan J. van Spronsen, Joris A. Veltman, Eric Wartchow, Liesbeth T. Wintjes, Yaniv Zohar, Miguel A. Fernández-Moreno, Hagit N. Baris, Claudia Donnini, Michal Minczuk, Richard J. Rodenburg, Johan L. K. Van Hove
Format: Article
Language:English
Published: Nature Publishing Group 2018-10-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-018-06250-w
id doaj-5e2c03b6081043e5add48aba3812d059
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Marisa W. Friederich
Sharita Timal
Christopher A. Powell
Cristina Dallabona
Alina Kurolap
Sara Palacios-Zambrano
Drago Bratkovic
Terry G. J. Derks
David Bick
Katelijne Bouman
Kathryn C. Chatfield
Nadine Damouny-Naoum
Megan K. Dishop
Tzipora C. Falik-Zaccai
Fuad Fares
Ayalla Fedida
Ileana Ferrero
Renata C. Gallagher
Rafael Garesse
Micol Gilberti
Cristina González
Katherine Gowan
Clair Habib
Rebecca K. Halligan
Limor Kalfon
Kaz Knight
Dirk Lefeber
Laura Mamblona
Hanna Mandel
Adi Mory
John Ottoson
Tamar Paperna
Ger J. M. Pruijn
Pedro F. Rebelo-Guiomar
Ann Saada
Bruno Sainz
Hayley Salvemini
Mirthe H. Schoots
Jan A. Smeitink
Maciej J. Szukszto
Hendrik J. ter Horst
Frans van den Brandt
Francjan J. van Spronsen
Joris A. Veltman
Eric Wartchow
Liesbeth T. Wintjes
Yaniv Zohar
Miguel A. Fernández-Moreno
Hagit N. Baris
Claudia Donnini
Michal Minczuk
Richard J. Rodenburg
Johan L. K. Van Hove
spellingShingle Marisa W. Friederich
Sharita Timal
Christopher A. Powell
Cristina Dallabona
Alina Kurolap
Sara Palacios-Zambrano
Drago Bratkovic
Terry G. J. Derks
David Bick
Katelijne Bouman
Kathryn C. Chatfield
Nadine Damouny-Naoum
Megan K. Dishop
Tzipora C. Falik-Zaccai
Fuad Fares
Ayalla Fedida
Ileana Ferrero
Renata C. Gallagher
Rafael Garesse
Micol Gilberti
Cristina González
Katherine Gowan
Clair Habib
Rebecca K. Halligan
Limor Kalfon
Kaz Knight
Dirk Lefeber
Laura Mamblona
Hanna Mandel
Adi Mory
John Ottoson
Tamar Paperna
Ger J. M. Pruijn
Pedro F. Rebelo-Guiomar
Ann Saada
Bruno Sainz
Hayley Salvemini
Mirthe H. Schoots
Jan A. Smeitink
Maciej J. Szukszto
Hendrik J. ter Horst
Frans van den Brandt
Francjan J. van Spronsen
Joris A. Veltman
Eric Wartchow
Liesbeth T. Wintjes
Yaniv Zohar
Miguel A. Fernández-Moreno
Hagit N. Baris
Claudia Donnini
Michal Minczuk
Richard J. Rodenburg
Johan L. K. Van Hove
Pathogenic variants in glutamyl-tRNAGln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder
Nature Communications
author_facet Marisa W. Friederich
Sharita Timal
Christopher A. Powell
Cristina Dallabona
Alina Kurolap
Sara Palacios-Zambrano
Drago Bratkovic
Terry G. J. Derks
David Bick
Katelijne Bouman
Kathryn C. Chatfield
Nadine Damouny-Naoum
Megan K. Dishop
Tzipora C. Falik-Zaccai
Fuad Fares
Ayalla Fedida
Ileana Ferrero
Renata C. Gallagher
Rafael Garesse
Micol Gilberti
Cristina González
Katherine Gowan
Clair Habib
Rebecca K. Halligan
Limor Kalfon
Kaz Knight
Dirk Lefeber
Laura Mamblona
Hanna Mandel
Adi Mory
John Ottoson
Tamar Paperna
Ger J. M. Pruijn
Pedro F. Rebelo-Guiomar
Ann Saada
Bruno Sainz
Hayley Salvemini
Mirthe H. Schoots
Jan A. Smeitink
Maciej J. Szukszto
Hendrik J. ter Horst
Frans van den Brandt
Francjan J. van Spronsen
Joris A. Veltman
Eric Wartchow
Liesbeth T. Wintjes
Yaniv Zohar
Miguel A. Fernández-Moreno
Hagit N. Baris
Claudia Donnini
Michal Minczuk
Richard J. Rodenburg
Johan L. K. Van Hove
author_sort Marisa W. Friederich
title Pathogenic variants in glutamyl-tRNAGln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder
title_short Pathogenic variants in glutamyl-tRNAGln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder
title_full Pathogenic variants in glutamyl-tRNAGln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder
title_fullStr Pathogenic variants in glutamyl-tRNAGln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder
title_full_unstemmed Pathogenic variants in glutamyl-tRNAGln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder
title_sort pathogenic variants in glutamyl-trnagln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2018-10-01
description Abstract Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNAGln). mt-tRNAGln is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome. Here, we describe nine patients from five families with genetic defects in a GatCAB complex subunit, including QRSL1, GATB, and GATC, each showing a lethal metabolic cardiomyopathy syndrome. Functional studies reveal combined respiratory chain enzyme deficiencies and mitochondrial dysfunction. Aminoacylation of mt-tRNAGln and mitochondrial protein translation are deficient in patients’ fibroblasts cultured in the absence of glutamine but restore in high glutamine. Lentiviral rescue experiments and modeling in S. cerevisiae homologs confirm pathogenicity. Our study completes a decade of investigations on mitochondrial aminoacylation disorders, starting with DARS2 and ending with the GatCAB complex.
url https://doi.org/10.1038/s41467-018-06250-w
work_keys_str_mv AT marisawfriederich pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT sharitatimal pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT christopherapowell pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT cristinadallabona pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT alinakurolap pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT sarapalacioszambrano pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT dragobratkovic pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT terrygjderks pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT davidbick pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT katelijnebouman pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT kathryncchatfield pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT nadinedamounynaoum pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT megankdishop pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT tziporacfalikzaccai pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT fuadfares pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT ayallafedida pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT ileanaferrero pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT renatacgallagher pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT rafaelgaresse pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT micolgilberti pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT cristinagonzalez pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT katherinegowan pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT clairhabib pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT rebeccakhalligan pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT limorkalfon pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT kazknight pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT dirklefeber pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT lauramamblona pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT hannamandel pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT adimory pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT johnottoson pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT tamarpaperna pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT gerjmpruijn pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT pedrofrebeloguiomar pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT annsaada pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT brunosainz pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT hayleysalvemini pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT mirthehschoots pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT janasmeitink pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT maciejjszukszto pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT hendrikjterhorst pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT fransvandenbrandt pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT francjanjvanspronsen pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT jorisaveltman pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT ericwartchow pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT liesbethtwintjes pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT yanivzohar pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT miguelafernandezmoreno pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT hagitnbaris pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT claudiadonnini pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT michalminczuk pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT richardjrodenburg pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
AT johanlkvanhove pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder
_version_ 1721448501961818112
spelling doaj-5e2c03b6081043e5add48aba3812d0592021-05-11T10:16:37ZengNature Publishing GroupNature Communications2041-17232018-10-019111410.1038/s41467-018-06250-wPathogenic variants in glutamyl-tRNAGln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorderMarisa W. Friederich0Sharita Timal1Christopher A. Powell2Cristina Dallabona3Alina Kurolap4Sara Palacios-Zambrano5Drago Bratkovic6Terry G. J. Derks7David Bick8Katelijne Bouman9Kathryn C. Chatfield10Nadine Damouny-Naoum11Megan K. Dishop12Tzipora C. Falik-Zaccai13Fuad Fares14Ayalla Fedida15Ileana Ferrero16Renata C. Gallagher17Rafael Garesse18Micol Gilberti19Cristina González20Katherine Gowan21Clair Habib22Rebecca K. Halligan23Limor Kalfon24Kaz Knight25Dirk Lefeber26Laura Mamblona27Hanna Mandel28Adi Mory29John Ottoson30Tamar Paperna31Ger J. M. Pruijn32Pedro F. Rebelo-Guiomar33Ann Saada34Bruno Sainz35Hayley Salvemini36Mirthe H. Schoots37Jan A. Smeitink38Maciej J. Szukszto39Hendrik J. ter Horst40Frans van den Brandt41Francjan J. van Spronsen42Joris A. Veltman43Eric Wartchow44Liesbeth T. Wintjes45Yaniv Zohar46Miguel A. Fernández-Moreno47Hagit N. Baris48Claudia Donnini49Michal Minczuk50Richard J. Rodenburg51Johan L. K. Van Hove52Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of ColoradoRadboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical CenterMedical Research Council, Mitochondrial Biology Unit, University of CambridgeDepartment of Chemistry, Life Sciences and Environmental Sustainability, University of ParmaThe Genetics Institute, Rambam Health Care CampusDepartamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de MadridSA Pathology, Women and Children’s Hospital AdelaideDivision of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, University of GroningenHudsonAlpha Institute for BiotechnologyDepartment of Genetics, University Medical Center of Groningen, University of GroningenDepartment of Pediatrics, Section of Pediatric Cardiology, Children’s Hospital Colorado, University of ColoradoThe Genetics Institute, Rambam Health Care CampusDepartment of Pathology, Children’s Hospital Colorado, University of ColoradoInstitute of Human Genetics, Galilee Medical CenterDepartment of Human Biology, Faculty of Natural Sciences, University of HaifaInstitute of Human Genetics, Galilee Medical CenterDepartment of Chemistry, Life Sciences and Environmental Sustainability, University of ParmaSection of Clinical Genetics and Metabolism, Department of Pediatrics, University of ColoradoDepartamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de MadridDepartment of Chemistry, Life Sciences and Environmental Sustainability, University of ParmaDepartamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de MadridDepartment of Biochemistry and Molecular Genetics, University of ColoradoDepartment of Pediatrics, Bnai Zion Medical CenterSA Pathology, Women and Children’s Hospital AdelaideInstitute of Human Genetics, Galilee Medical CenterSection of Clinical Genetics and Metabolism, Department of Pediatrics, University of ColoradoDepartment of Human Genetics, Radboud Institute for Molecular Life Sciences and Donders Centre for Neuroscience, Radboud University Medical CenterDepartamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de MadridThe Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyThe Genetics Institute, Rambam Health Care CampusSection of Clinical Genetics and Metabolism, Department of Pediatrics, University of ColoradoThe Genetics Institute, Rambam Health Care CampusDepartment of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud UniversityMedical Research Council, Mitochondrial Biology Unit, University of CambridgeMonique and Jacques Roboh Department of Genetic Research and the Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical CenterDepartamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de MadridSA Pathology, Women and Children’s Hospital AdelaideDepartment of Pathology and Medical Biology, University Medical Center Groningen, University of GroningenRadboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical CenterMedical Research Council, Mitochondrial Biology Unit, University of CambridgeDivision of Neonatology, Beatrix Children’s Hospital, University Medical Center Groningen, University of GroningenRadboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical CenterDivision of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, University of GroningenDepartment of Human Genetics, Radboud Institute for Molecular Life Sciences and Donders Centre for Neuroscience, Radboud University Medical CenterDepartment of Pathology, Children’s Hospital Colorado, University of ColoradoRadboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical CenterInstitute of Pathology, Rambam Health Care CampusDepartamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de MadridThe Genetics Institute, Rambam Health Care CampusDepartment of Chemistry, Life Sciences and Environmental Sustainability, University of ParmaMedical Research Council, Mitochondrial Biology Unit, University of CambridgeRadboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical CenterSection of Clinical Genetics and Metabolism, Department of Pediatrics, University of ColoradoAbstract Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNAGln). mt-tRNAGln is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome. Here, we describe nine patients from five families with genetic defects in a GatCAB complex subunit, including QRSL1, GATB, and GATC, each showing a lethal metabolic cardiomyopathy syndrome. Functional studies reveal combined respiratory chain enzyme deficiencies and mitochondrial dysfunction. Aminoacylation of mt-tRNAGln and mitochondrial protein translation are deficient in patients’ fibroblasts cultured in the absence of glutamine but restore in high glutamine. Lentiviral rescue experiments and modeling in S. cerevisiae homologs confirm pathogenicity. Our study completes a decade of investigations on mitochondrial aminoacylation disorders, starting with DARS2 and ending with the GatCAB complex.https://doi.org/10.1038/s41467-018-06250-w