Feature Extraction and Selection Scheme for Intelligent Engine Fault Diagnosis Based on 2DNMF, Mutual Information, and NSGA-II
A novel feature extraction and selection scheme is presented for intelligent engine fault diagnosis by utilizing two-dimensional nonnegative matrix factorization (2DNMF), mutual information, and nondominated sorting genetic algorithms II (NSGA-II). Experiments are conducted on an engine test rig, in...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2016-01-01
|
Series: | Shock and Vibration |
Online Access: | http://dx.doi.org/10.1155/2016/3975285 |