Grandpaternal-induced transgenerational dietary reprogramming of the unfolded protein response in skeletal muscle

Objective: Parental nutrition and lifestyle impact the metabolic phenotype of the offspring. We have reported that grandpaternal chronic high-fat diet (HFD) transgenerationally impairs glucose metabolism in subsequent generations. Here we determined whether grandpaternal diet transgenerationally imp...

Full description

Bibliographic Details
Main Authors: Petter S. Alm, Thais de Castro Barbosa, Romain Barrès, Anna Krook, Juleen R. Zierath
Format: Article
Language:English
Published: Elsevier 2017-07-01
Series:Molecular Metabolism
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S221287781730340X
Description
Summary:Objective: Parental nutrition and lifestyle impact the metabolic phenotype of the offspring. We have reported that grandpaternal chronic high-fat diet (HFD) transgenerationally impairs glucose metabolism in subsequent generations. Here we determined whether grandpaternal diet transgenerationally impacts the transcriptome and lipidome in skeletal muscle. Our aim was to identify tissue-specific pathways involved in transgenerational inheritance of environmental-induced phenotypes. Methods: F0 male Sprague–Dawley rats were fed a HFD or chow for 12 weeks before breeding with chow-fed females to generate the F1 generation. F2 offspring were generated by mating F1 males fed a chow diet with an independent line of chow-fed females. F1 and F2 offspring were fed chow or HFD for 12 weeks. Transcriptomic and LC-MS lipidomic analyses were performed in extensor digitorum longus muscle from F2-females rats. Gene set enrichment analysis (GSEA) was performed to determine pathways reprogrammed by grandpaternal diet. Results: GSEA revealed an enrichment of the unfolded protein response pathway in skeletal muscle of grand-offspring from HFD-fed grandfathers compared to grand-offspring of chow-fed males. Activation of the stress sensor (ATF6α), may be a pivotal point whereby this pathway is activated. Interestingly, skeletal muscle from F1-offspring was not affected in a similar manner. No major changes were observed in the skeletal muscle lipidome profile due to grandpaternal diet. Conclusions: Grandpaternal HFD-induced obesity transgenerationally affected the skeletal muscle transcriptome. This finding further highlights the impact of parental exposure to environmental factors on offspring's development and health.
ISSN:2212-8778