Positive solutions for the one-dimensional Sturm-Liouville superlinear p-Laplacian problem
We prove the existence of positive classical solutions for the p-Laplacian problem $$\displaylines{ -(r(t)\phi (u'))'=f(t,u),\quad t\in (0,1), \cr au(0)-b\phi ^{-1}(r(0))u'(0)=0,\ cu(1)+d\phi ^{-1}(r(1))u'(1)=0, }$$ where $\phi (s)=|s|^{p-2}s$, $p>1$, $f:(0,1)\times [ 0,...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2018-04-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2018/92/abstr.html |