Ground state solutions for asymptotically periodic Schrödinger–Poisson systems involving Hartree-type nonlinearities
Abstract We use the non-Nehari manifold method to deal with the system {−Δu+V(x)u+ϕu=(∫R3Q(y)F(u(y))|x−y|μdy)Q(x)f(u(x)),x∈R3,−Δϕ=u2,u∈H1(R3), $$ \textstyle\begin{cases} -\Delta u+V(x)u+\phi u= (\int_{\mathbb{R}^{3}}\frac {Q(y)F(u(y))}{|x-y|^{\mu}}\,dy )Q(x)f(u(x)),\quad x\in\mathbb{R}^{3}, \\ -\Del...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-07-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13661-018-1025-8 |