On generalized Jordan ∗-derivation in rings

Let n ⩾ 1 be a fixed integer and let R be an (n + 1)!-torsion free ∗-ring with identity element e. If F, d:R → R are two additive mappings satisfying F(xn+1) = F(x)(x∗)n + xd(x)(x∗)n−1 + x2d(x)(x∗)n−2+ ⋯ +xnd(x) for all x ∈ R, then d is a Jordan ∗-derivation and F is a generalized Jordan ∗-derivatio...

Full description

Bibliographic Details
Main Authors: Nadeem ur Rehman, Abu Zaid Ansari, Tarannum Bano
Format: Article
Language:English
Published: SpringerOpen 2014-04-01
Series:Journal of the Egyptian Mathematical Society
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1110256X13000552