Acetylated and Methylated β-Cyclodextrins as Viable Soluble Supports for the Synthesis of Short 2′-Oligodeoxyribo-nucleotides in Solution

Novel soluble supports for oligonucleotide synthesis 11a–c have been prepared by immobilizing a 5′-O-protected 3′-O-(hex-5-ynoyl)thymidine (6 or 7) to peracetylated or permethylated 6-deoxy-6-azido-β-cyclodextrins 10a or 10b by Cu(I)-promoted 1,...

Full description

Bibliographic Details
Main Authors: Harri Lönnberg, Pasi Virta, Vyacheslav Kungurtsev, Alejandro Gimenez Molina
Format: Article
Language:English
Published: MDPI AG 2012-10-01
Series:Molecules
Subjects:
Online Access:http://www.mdpi.com/1420-3049/17/10/12102
Description
Summary:Novel soluble supports for oligonucleotide synthesis 11a–c have been prepared by immobilizing a 5′-O-protected 3′-O-(hex-5-ynoyl)thymidine (6 or 7) to peracetylated or permethylated 6-deoxy-6-azido-β-cyclodextrins 10a or 10b by Cu(I)-promoted 1,3-dipolar cycloaddition. The applicability of the supports to oligonucleotide synthesis by the phosphoramidite strategy has been demonstrated by assembling a 3′-TTT-5′ trimer from commercially available 5′-O-(4,4′-dimethoxytrityl)thymidine 3′-phosphoramidite. To simplify the coupling cycle, the 5′-O-(4,4′-dimethoxytrityl) protecting group has been replaced with an acetal that upon acidolytic removal yields volatile products. For this purpose, 5′-O-(1-methoxy-1-methylethyl)-protected 3′-(2-cyanoethyl-N,N-diisopropyl-phosphoramidite)s of thymidine (5a), N4-benzoyl-2′-deoxycytidine (5b) and N6-benzoyl-2′-deoxyadenosine (5c) have been synthesized and utilized in synthesis of a pentameric oligonucleotide 3′-TTCAT-5′ on the permethylated cyclodextrin support 11c.
ISSN:1420-3049