Differential Screening of Mutated SOD1 Transgenic Mice Reveals Early Up-Regulation of a Fast Axonal Transport Component in Spinal Cord Motor Neurons

In the present study we analyze the molecular mechanisms underlying motor neuron degeneration in familial amyotrophic lateral sclerosis (FALS). For this, we used a transgenic mouse model expressing the Cu/Zn superoxide dismutase (SOD1) gene with a Gly86 to Arg (G86R) mutation equivalent to that foun...

Full description

Bibliographic Details
Main Authors: Luc Dupuis, Marc de Tapia, Frédérique René, Bernadette Lutz-Bucher, Jon W. Gordon, Luc Mercken, Laurent Pradier, Jean-Philippe Loeffler
Format: Article
Language:English
Published: Elsevier 2000-08-01
Series:Neurobiology of Disease
Online Access:http://www.sciencedirect.com/science/article/pii/S0969996100902924
id doaj-72d6424233ce45a2bbfcf47b3d4487ea
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Luc Dupuis
Marc de Tapia
Frédérique René
Bernadette Lutz-Bucher
Jon W. Gordon
Luc Mercken
Laurent Pradier
Jean-Philippe Loeffler
spellingShingle Luc Dupuis
Marc de Tapia
Frédérique René
Bernadette Lutz-Bucher
Jon W. Gordon
Luc Mercken
Laurent Pradier
Jean-Philippe Loeffler
Differential Screening of Mutated SOD1 Transgenic Mice Reveals Early Up-Regulation of a Fast Axonal Transport Component in Spinal Cord Motor Neurons
Neurobiology of Disease
author_facet Luc Dupuis
Marc de Tapia
Frédérique René
Bernadette Lutz-Bucher
Jon W. Gordon
Luc Mercken
Laurent Pradier
Jean-Philippe Loeffler
author_sort Luc Dupuis
title Differential Screening of Mutated SOD1 Transgenic Mice Reveals Early Up-Regulation of a Fast Axonal Transport Component in Spinal Cord Motor Neurons
title_short Differential Screening of Mutated SOD1 Transgenic Mice Reveals Early Up-Regulation of a Fast Axonal Transport Component in Spinal Cord Motor Neurons
title_full Differential Screening of Mutated SOD1 Transgenic Mice Reveals Early Up-Regulation of a Fast Axonal Transport Component in Spinal Cord Motor Neurons
title_fullStr Differential Screening of Mutated SOD1 Transgenic Mice Reveals Early Up-Regulation of a Fast Axonal Transport Component in Spinal Cord Motor Neurons
title_full_unstemmed Differential Screening of Mutated SOD1 Transgenic Mice Reveals Early Up-Regulation of a Fast Axonal Transport Component in Spinal Cord Motor Neurons
title_sort differential screening of mutated sod1 transgenic mice reveals early up-regulation of a fast axonal transport component in spinal cord motor neurons
publisher Elsevier
series Neurobiology of Disease
issn 1095-953X
publishDate 2000-08-01
description In the present study we analyze the molecular mechanisms underlying motor neuron degeneration in familial amyotrophic lateral sclerosis (FALS). For this, we used a transgenic mouse model expressing the Cu/Zn superoxide dismutase (SOD1) gene with a Gly86 to Arg (G86R) mutation equivalent to that found in a subset of human FALS. Using an optimized suppression subtractive hybridization method, a cDNA specifically up-regulated during the asymptomatic phase in the lumbar spinal cord of G86R mice was identified by sequence analysis as the KIF3-associated protein (KAP3), a regulator of fast axonal transport. RT-PCR analysis revealed that KAP3 induction was an early event arising long before axonal degeneration. Immunohistochemical studies further revealed that KAP3 protein predominantly accumulates in large motor neurons of the ventral spinal cord. We further demonstrated that KAP3 up-regulation occurs independent of any change in the other components of the kinesin II complex. However, since the ubiquitous KIF1A motor is up-regulated, our results show an early and complex rearrangement of the fast axonal transport machinery in the course of FALS pathology.
url http://www.sciencedirect.com/science/article/pii/S0969996100902924
work_keys_str_mv AT lucdupuis differentialscreeningofmutatedsod1transgenicmicerevealsearlyupregulationofafastaxonaltransportcomponentinspinalcordmotorneurons
AT marcdetapia differentialscreeningofmutatedsod1transgenicmicerevealsearlyupregulationofafastaxonaltransportcomponentinspinalcordmotorneurons
AT frederiquerene differentialscreeningofmutatedsod1transgenicmicerevealsearlyupregulationofafastaxonaltransportcomponentinspinalcordmotorneurons
AT bernadettelutzbucher differentialscreeningofmutatedsod1transgenicmicerevealsearlyupregulationofafastaxonaltransportcomponentinspinalcordmotorneurons
AT jonwgordon differentialscreeningofmutatedsod1transgenicmicerevealsearlyupregulationofafastaxonaltransportcomponentinspinalcordmotorneurons
AT lucmercken differentialscreeningofmutatedsod1transgenicmicerevealsearlyupregulationofafastaxonaltransportcomponentinspinalcordmotorneurons
AT laurentpradier differentialscreeningofmutatedsod1transgenicmicerevealsearlyupregulationofafastaxonaltransportcomponentinspinalcordmotorneurons
AT jeanphilippeloeffler differentialscreeningofmutatedsod1transgenicmicerevealsearlyupregulationofafastaxonaltransportcomponentinspinalcordmotorneurons
_version_ 1724212239651569664
spelling doaj-72d6424233ce45a2bbfcf47b3d4487ea2021-03-20T04:46:25ZengElsevierNeurobiology of Disease1095-953X2000-08-0174274285Differential Screening of Mutated SOD1 Transgenic Mice Reveals Early Up-Regulation of a Fast Axonal Transport Component in Spinal Cord Motor NeuronsLuc Dupuis0Marc de Tapia1Frédérique René2Bernadette Lutz-Bucher3Jon W. Gordon4Luc Mercken5Laurent Pradier6Jean-Philippe Loeffler7Laboratoire de Neurophysiologie Cellulaire et Intégrée, UMR CNRS 7519, Institut de Physiologie et Chimie Biologique, 21 Rue René Descartes, 67084, Strasbourg Cédex, France; Department of Obstetrics/Gynecology, Mount Sinaı̈ Medical Center, New York, New York, 10029; Central Nervous System Department, Aventis, Magendie Building, 13 Quai Jules Guesde, 94403, Vitry sur Seine Cédex, FranceLaboratoire de Neurophysiologie Cellulaire et Intégrée, UMR CNRS 7519, Institut de Physiologie et Chimie Biologique, 21 Rue René Descartes, 67084, Strasbourg Cédex, France; Department of Obstetrics/Gynecology, Mount Sinaı̈ Medical Center, New York, New York, 10029; Central Nervous System Department, Aventis, Magendie Building, 13 Quai Jules Guesde, 94403, Vitry sur Seine Cédex, FranceLaboratoire de Neurophysiologie Cellulaire et Intégrée, UMR CNRS 7519, Institut de Physiologie et Chimie Biologique, 21 Rue René Descartes, 67084, Strasbourg Cédex, France; Department of Obstetrics/Gynecology, Mount Sinaı̈ Medical Center, New York, New York, 10029; Central Nervous System Department, Aventis, Magendie Building, 13 Quai Jules Guesde, 94403, Vitry sur Seine Cédex, FranceLaboratoire de Neurophysiologie Cellulaire et Intégrée, UMR CNRS 7519, Institut de Physiologie et Chimie Biologique, 21 Rue René Descartes, 67084, Strasbourg Cédex, France; Department of Obstetrics/Gynecology, Mount Sinaı̈ Medical Center, New York, New York, 10029; Central Nervous System Department, Aventis, Magendie Building, 13 Quai Jules Guesde, 94403, Vitry sur Seine Cédex, FranceLaboratoire de Neurophysiologie Cellulaire et Intégrée, UMR CNRS 7519, Institut de Physiologie et Chimie Biologique, 21 Rue René Descartes, 67084, Strasbourg Cédex, France; Department of Obstetrics/Gynecology, Mount Sinaı̈ Medical Center, New York, New York, 10029; Central Nervous System Department, Aventis, Magendie Building, 13 Quai Jules Guesde, 94403, Vitry sur Seine Cédex, FranceLaboratoire de Neurophysiologie Cellulaire et Intégrée, UMR CNRS 7519, Institut de Physiologie et Chimie Biologique, 21 Rue René Descartes, 67084, Strasbourg Cédex, France; Department of Obstetrics/Gynecology, Mount Sinaı̈ Medical Center, New York, New York, 10029; Central Nervous System Department, Aventis, Magendie Building, 13 Quai Jules Guesde, 94403, Vitry sur Seine Cédex, FranceLaboratoire de Neurophysiologie Cellulaire et Intégrée, UMR CNRS 7519, Institut de Physiologie et Chimie Biologique, 21 Rue René Descartes, 67084, Strasbourg Cédex, France; Department of Obstetrics/Gynecology, Mount Sinaı̈ Medical Center, New York, New York, 10029; Central Nervous System Department, Aventis, Magendie Building, 13 Quai Jules Guesde, 94403, Vitry sur Seine Cédex, FranceLaboratoire de Neurophysiologie Cellulaire et Intégrée, UMR CNRS 7519, Institut de Physiologie et Chimie Biologique, 21 Rue René Descartes, 67084, Strasbourg Cédex, France; Department of Obstetrics/Gynecology, Mount Sinaı̈ Medical Center, New York, New York, 10029; Central Nervous System Department, Aventis, Magendie Building, 13 Quai Jules Guesde, 94403, Vitry sur Seine Cédex, FranceIn the present study we analyze the molecular mechanisms underlying motor neuron degeneration in familial amyotrophic lateral sclerosis (FALS). For this, we used a transgenic mouse model expressing the Cu/Zn superoxide dismutase (SOD1) gene with a Gly86 to Arg (G86R) mutation equivalent to that found in a subset of human FALS. Using an optimized suppression subtractive hybridization method, a cDNA specifically up-regulated during the asymptomatic phase in the lumbar spinal cord of G86R mice was identified by sequence analysis as the KIF3-associated protein (KAP3), a regulator of fast axonal transport. RT-PCR analysis revealed that KAP3 induction was an early event arising long before axonal degeneration. Immunohistochemical studies further revealed that KAP3 protein predominantly accumulates in large motor neurons of the ventral spinal cord. We further demonstrated that KAP3 up-regulation occurs independent of any change in the other components of the kinesin II complex. However, since the ubiquitous KIF1A motor is up-regulated, our results show an early and complex rearrangement of the fast axonal transport machinery in the course of FALS pathology.http://www.sciencedirect.com/science/article/pii/S0969996100902924