Increased Circulatory Asymmetric Dimethylarginine and Multiple Organ Failure: Bile Duct Ligation in Rat as a Model

Bile duct ligation (BDL)-treated rats exhibit cholestasis, increased systemic oxidative stress, and liver fibrosis, which ultimately lead to liver cirrhosis. Asymmetric dimethylarginine (ADMA) is a competitive inhibitor of nitric oxide synthase that can decrease the synthesis of nitric oxide. BDL ra...

Full description

Bibliographic Details
Main Authors: Jiunn-Ming Sheen, Yu-Chieh Chen, You-Lin Tain, Li-Tung Huang
Format: Article
Language:English
Published: MDPI AG 2014-03-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:http://www.mdpi.com/1422-0067/15/3/3989
Description
Summary:Bile duct ligation (BDL)-treated rats exhibit cholestasis, increased systemic oxidative stress, and liver fibrosis, which ultimately lead to liver cirrhosis. Asymmetric dimethylarginine (ADMA) is a competitive inhibitor of nitric oxide synthase that can decrease the synthesis of nitric oxide. BDL rats have higher plasma and hepatic ADMA levels, which may be due to increased hepatic protein arginine methyltransferase-1 and decreased dimethylarginine dimethylaminohydrolase expression. BDL rats also exhibit renal and brain damage characterized by increased tissue ADMA concentrations. The increased plasma ADMA levels and multiple organ damages seen here are also observed following multiple organ failures associated with critical illness. This review discusses the dysregulation of ADMA in major organs in BDL rats and the role of increased ADMA in multiple organ damages.
ISSN:1422-0067