Persistence of pro-arrhythmic spatio-temporal calcium patterns in atrial myocytes: a computational study of ping waves

Clusters of ryanodine receptors within atrial myocytes are confined to spatially separated layers. In many species, these layers are not juxtaposed by invaginations of the plasma membrane, so that calcium-induced-calcium signals rely on centripetal propagation rather than voltage-synchronised chann...

Full description

Bibliographic Details
Main Authors: Rüdiger eThul, Stephen eCoombes, Martin D Bootman
Format: Article
Language:English
Published: Frontiers Media S.A. 2012-07-01
Series:Frontiers in Physiology
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fphys.2012.00279/full
Description
Summary:Clusters of ryanodine receptors within atrial myocytes are confined to spatially separated layers. In many species, these layers are not juxtaposed by invaginations of the plasma membrane, so that calcium-induced-calcium signals rely on centripetal propagation rather than voltage-synchronised channel openings to invade the interior of the cell and trigger contraction. The combination of this specific cellular geometry and dynamics of calcium release can lead to novel autonomous spatio-temporal waves, and in particular ping waves. These are waves of calcium release activity that spread as counter-rotating sectors of elevated calcium within a single layer of ryanodine receptors, and can seed further longitudinal calcium waves. Here we show, using a computational model, that these calcium waves can dominate the response of a cell to electrical pacing and hence are pro-arrhythmic. This highlights the importance of modelling internal cellular structures when investigating mechanisms of cardiac dysfunction such as atrial arrhythmia.
ISSN:1664-042X