Maximum Likelihood-Based Iterated Divided Difference Filter for Nonlinear Systems from Discrete Noisy Measurements
A new filter named the maximum likelihood-based iterated divided difference filter (MLIDDF) is developed to improve the low state estimation accuracy of nonlinear state estimation due to large initial estimation errors and nonlinearity of measurement equations. The MLIDDF algorithm is derivative-fre...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2012-06-01
|
Series: | Sensors |
Subjects: | |
Online Access: | http://www.mdpi.com/1424-8220/12/7/8912 |