Dough Rheological Properties, Microstructure and Bread Quality of Wheat-Germinated Bean Composite Flour

Germinated bean flour (GBF) was obtained and incorporated in different levels (5%, 10%, 15%, 20% and 25%) into dough and bread made from refined wheat flour. The incorporation of GBF into wheat flour led to a decrease of the water absorption value, dough consistency, baking strength, extensibility a...

Full description

Bibliographic Details
Main Authors: Denisa Atudorei, Olivia Atudorei, Georgiana Gabriela Codină
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/10/7/1542
Description
Summary:Germinated bean flour (GBF) was obtained and incorporated in different levels (5%, 10%, 15%, 20% and 25%) into dough and bread made from refined wheat flour. The incorporation of GBF into wheat flour led to a decrease of the water absorption value, dough consistency, baking strength, extensibility and improved tolerance for mixing, total gas production and α-amylase activity. Tan <i>δ</i> increased in a frequency-dependent manner for the samples with a GBF addition, whereas the <i>G’</i> and <i>G”</i> decreased with the increased value of the temperature. According to the microscopic structures of the dough samples, a decrease of the starch area may be clearly seen for the samples with high levels of GBF addition in wheat flour. The bread evaluation showed that the specific volume, porosity and elasticity increased, whereas the firmness, gumminess and chewiness decreased up to a level of 15% GBF addition in wheat flour. The color parameters <i>L*</i>, <i>a*</i> and <i>b*</i> of the bread samples indicated a darkening effect of GBF on the crumb and crust. From the sensory point of view, the bread up to a 15% GBF addition was well-appreciated by the panelists. According to the data obtained, GBF could be recommended for use as an improver, especially up to a level of 15% addition in the bread-making industry.
ISSN:2304-8158