Affine and Finite Lie Algebras and Integrable Toda Field Equations on Discrete Space-Time
Difference-difference systems are suggested corresponding to the Cartan matrices of any simple or affine Lie algebra. In the cases of the algebras $A_N$, $B_N$, $C_N$, $G_2$, $D_3$, $A_1^{(1)}$, $A_2^{(2)}$, $D^{(2)}_N$ these systems are proved to be integrable. For the systems corresponding to the...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
National Academy of Science of Ukraine
2012-09-01
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Subjects: | |
Online Access: | http://dx.doi.org/10.3842/SIGMA.2012.062 |