Temporal Learning in Video Data Using Deep Learning and Gaussian Processes
This paper presents an approach for data-driven modeling of hidden, stationary temporal dynamics in sequential images or videos using deep learning and Bayesian non-parametric techniques. In particular, a deep Convolutional Neural Network (CNN) is used to extract spatial features in an unsupervised...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The Prognostics and Health Management Society
2016-12-01
|
Series: | International Journal of Prognostics and Health Management |
Subjects: | |
Online Access: | https://papers.phmsociety.org/index.php/ijphm/article/view/2460 |