A Distributed Multiple Populations Framework for Evolutionary Algorithm in Solving Dynamic Optimization Problems
Aiming to dynamic optimization problems (DOPs), this paper develops a novel general distributed multiple populations (DMP) framework for evolutionary algorithms (EAs). DMP employs six strategies designed in three levels (i.e., population-level, subpopulation-level, and individual-level) to deal with...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8669738/ |