Gallium Nitride Power Electronic Devices Modeling Using Machine Learning
A state-of-the-art Machine Learning (ML) based approach, by modeling the behavior of Gallium Nitride (GaN) power electronic devices, is presented in this paper. Switching voltage and current waveforms of these novel devices are accurately predicted using the developed supervised ML algorithm. This w...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9127426/ |