Targeted genome engineering in human induced pluripotent stem cells by penetrating TALENs

Background: Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) have been successfully used to knock out endogenous genes in stem cell research. However, the deficiencies of current gene-based delivery systems may hamper the clinical application of these nucleas...

Full description

Bibliographic Details
Main Authors: Renli Ru, Yongchao Yao, Songlin Yu, Benpeng Yin, Wanwan Xu, Siting Zhao, Li Qin, Xiaoping Chen
Format: Article
Language:English
Published: SpringerOpen 2013-01-01
Series:Cell Regeneration
Subjects:
TAT
Online Access:http://www.sciencedirect.com/science/article/pii/S204597691730041X
Description
Summary:Background: Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) have been successfully used to knock out endogenous genes in stem cell research. However, the deficiencies of current gene-based delivery systems may hamper the clinical application of these nucleases. A new delivery method that can improve the utility of these nucleases is needed. Results: In this study, we utilized a cell-penetrating peptide-based system for ZFN and TALEN delivery. Functional TAT-ZFN and TAT-TALEN proteins were generated by fusing the cell-penetrating TAT peptide to ZFN and TALEN, respectively. However, TAT-ZFN was difficult to purify in quantities sufficient for analysis in cell culture. Purified TAT-TALEN was able to penetrate cells and disrupt the gene encoding endogenous human chemokine (C-C motif) receptor 5 (CCR5, a co-receptor for HIV-1 entry into cells). Hypothermic treatment greatly enhanced the TAT-TALEN-mediated gene disruption efficiency. A 5% modification rate was observed in human induced pluripotent stem cells (hiPSCs) treated with TAT-TALEN as measured by the Surveyor assay. Conclusions: TAT-TALEN protein-mediated gene disruption was applicable in hiPSCs and represents a promising technique for gene knockout in stem cells. This new technique may advance the clinical application of TALEN technology.
ISSN:2045-9769