Impact of Sulfur Passivation on Carrier Transport Properties of In<sub>0.7</sub>Ga<sub>0.3</sub>As Quantum-Well MOSFETs

We investigated the impact of a sulfur passivation (S-passivation) process step on carrier transport properties of surface-channel In<sub>0.7</sub>Ga<sub>0.3</sub>As quantum-well (QW) Metal-Oxide-Semiconductor Field-Effect-Transistors (MOSFETs) with source/drain (S/D) regrowt...

Full description

Bibliographic Details
Main Authors: Jun-Gyu Kim, Hyeon-Bhin Jo, In-Geun Lee, Tae-Woo Kim, Dae-Hyun Kim
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Journal of the Electron Devices Society
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9348904/
id doaj-8cea47dd5f99471b870fdbdb21eac9ed
record_format Article
spelling doaj-8cea47dd5f99471b870fdbdb21eac9ed2021-03-29T18:53:16ZengIEEEIEEE Journal of the Electron Devices Society2168-67342021-01-01920921410.1109/JEDS.2021.30566899348904Impact of Sulfur Passivation on Carrier Transport Properties of In<sub>0.7</sub>Ga<sub>0.3</sub>As Quantum-Well MOSFETsJun-Gyu Kim0https://orcid.org/0000-0003-2403-294XHyeon-Bhin Jo1https://orcid.org/0000-0002-0242-6983In-Geun Lee2https://orcid.org/0000-0002-5629-4760Tae-Woo Kim3https://orcid.org/0000-0003-0234-5080Dae-Hyun Kim4https://orcid.org/0000-0001-5332-5114School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, South KoreaSchool of Electronic and Electrical Engineering, Kyungpook National University, Daegu, South KoreaDepartment of Materials Science and Engineering, Yonsei University, Seoul, South KoreaElectrical Engineering Department, University of Ulsan, Ulsan, South KoreaSchool of Electronic and Electrical Engineering, Kyungpook National University, Daegu, South KoreaWe investigated the impact of a sulfur passivation (S-passivation) process step on carrier transport properties of surface-channel In<sub>0.7</sub>Ga<sub>0.3</sub>As quantum-well (QW) Metal-Oxide-Semiconductor Field-Effect-Transistors (MOSFETs) with source/drain (S/D) regrowth contacts. To do so, we fabricated long-channel In<sub>0.7</sub>Ga<sub>0.3</sub>As QW MOSFETs with and without (NH<sub>4</sub>)<sub>2</sub>S treatment prior to a deposition of Al<sub>2</sub>O<sub>3</sub>/HfO<sub>2</sub> &#x003D; 1-nm/3-nm by atomic-layer-deposition (ALD). The devices with S-passivation exhibited a lower value of subthreshold-swing (S) &#x003D; 74 mV/decade and more positive shift in the threshold voltage (<inline-formula> <tex-math notation="LaTeX">$\text{V}_{\mathrm{ T}}$ </tex-math></inline-formula>) than those without S-passivation. From the perspective of carrier transport, S-passivated devices displayed excellent effective mobility (<inline-formula> <tex-math notation="LaTeX">$\mu _{eff}$ </tex-math></inline-formula>) in excess of 6,300 cm<sup>2</sup>/<inline-formula> <tex-math notation="LaTeX">$\text{V}\cdot \text{s}$ </tex-math></inline-formula> at 300 K. It turned out that the improvement of <inline-formula> <tex-math notation="LaTeX">$\mu _{eff}$ </tex-math></inline-formula> was attributed to reduced Coulombic and surface-roughness scatterings. Using a conductance method, a fairly small value of interface trap density <inline-formula> <tex-math notation="LaTeX">$({\mathrm{ D}}_{\mathrm{ it}}) = 1.56 \times 10^{12}$ </tex-math></inline-formula> cm<inline-formula> <tex-math notation="LaTeX">$^{-2}$ </tex-math></inline-formula>eV<inline-formula> <tex-math notation="LaTeX">$^{-1}$ </tex-math></inline-formula> was obtained for the devices with S-passivation, which was effective in mitigating the Coulombic scattering at the interface between the high-k dielectric layer and the In<sub>0.7</sub>Ga<sub>0.3</sub>As surface-channel layer.https://ieeexplore.ieee.org/document/9348904/In₀.₇Ga₀.₃AsMOSFETpassivationcarrier scattering mechanisminterface trap densityeffective mobility
collection DOAJ
language English
format Article
sources DOAJ
author Jun-Gyu Kim
Hyeon-Bhin Jo
In-Geun Lee
Tae-Woo Kim
Dae-Hyun Kim
spellingShingle Jun-Gyu Kim
Hyeon-Bhin Jo
In-Geun Lee
Tae-Woo Kim
Dae-Hyun Kim
Impact of Sulfur Passivation on Carrier Transport Properties of In<sub>0.7</sub>Ga<sub>0.3</sub>As Quantum-Well MOSFETs
IEEE Journal of the Electron Devices Society
In₀.₇Ga₀.₃As
MOSFET
passivation
carrier scattering mechanism
interface trap density
effective mobility
author_facet Jun-Gyu Kim
Hyeon-Bhin Jo
In-Geun Lee
Tae-Woo Kim
Dae-Hyun Kim
author_sort Jun-Gyu Kim
title Impact of Sulfur Passivation on Carrier Transport Properties of In<sub>0.7</sub>Ga<sub>0.3</sub>As Quantum-Well MOSFETs
title_short Impact of Sulfur Passivation on Carrier Transport Properties of In<sub>0.7</sub>Ga<sub>0.3</sub>As Quantum-Well MOSFETs
title_full Impact of Sulfur Passivation on Carrier Transport Properties of In<sub>0.7</sub>Ga<sub>0.3</sub>As Quantum-Well MOSFETs
title_fullStr Impact of Sulfur Passivation on Carrier Transport Properties of In<sub>0.7</sub>Ga<sub>0.3</sub>As Quantum-Well MOSFETs
title_full_unstemmed Impact of Sulfur Passivation on Carrier Transport Properties of In<sub>0.7</sub>Ga<sub>0.3</sub>As Quantum-Well MOSFETs
title_sort impact of sulfur passivation on carrier transport properties of in<sub>0.7</sub>ga<sub>0.3</sub>as quantum-well mosfets
publisher IEEE
series IEEE Journal of the Electron Devices Society
issn 2168-6734
publishDate 2021-01-01
description We investigated the impact of a sulfur passivation (S-passivation) process step on carrier transport properties of surface-channel In<sub>0.7</sub>Ga<sub>0.3</sub>As quantum-well (QW) Metal-Oxide-Semiconductor Field-Effect-Transistors (MOSFETs) with source/drain (S/D) regrowth contacts. To do so, we fabricated long-channel In<sub>0.7</sub>Ga<sub>0.3</sub>As QW MOSFETs with and without (NH<sub>4</sub>)<sub>2</sub>S treatment prior to a deposition of Al<sub>2</sub>O<sub>3</sub>/HfO<sub>2</sub> &#x003D; 1-nm/3-nm by atomic-layer-deposition (ALD). The devices with S-passivation exhibited a lower value of subthreshold-swing (S) &#x003D; 74 mV/decade and more positive shift in the threshold voltage (<inline-formula> <tex-math notation="LaTeX">$\text{V}_{\mathrm{ T}}$ </tex-math></inline-formula>) than those without S-passivation. From the perspective of carrier transport, S-passivated devices displayed excellent effective mobility (<inline-formula> <tex-math notation="LaTeX">$\mu _{eff}$ </tex-math></inline-formula>) in excess of 6,300 cm<sup>2</sup>/<inline-formula> <tex-math notation="LaTeX">$\text{V}\cdot \text{s}$ </tex-math></inline-formula> at 300 K. It turned out that the improvement of <inline-formula> <tex-math notation="LaTeX">$\mu _{eff}$ </tex-math></inline-formula> was attributed to reduced Coulombic and surface-roughness scatterings. Using a conductance method, a fairly small value of interface trap density <inline-formula> <tex-math notation="LaTeX">$({\mathrm{ D}}_{\mathrm{ it}}) = 1.56 \times 10^{12}$ </tex-math></inline-formula> cm<inline-formula> <tex-math notation="LaTeX">$^{-2}$ </tex-math></inline-formula>eV<inline-formula> <tex-math notation="LaTeX">$^{-1}$ </tex-math></inline-formula> was obtained for the devices with S-passivation, which was effective in mitigating the Coulombic scattering at the interface between the high-k dielectric layer and the In<sub>0.7</sub>Ga<sub>0.3</sub>As surface-channel layer.
topic In₀.₇Ga₀.₃As
MOSFET
passivation
carrier scattering mechanism
interface trap density
effective mobility
url https://ieeexplore.ieee.org/document/9348904/
work_keys_str_mv AT jungyukim impactofsulfurpassivationoncarriertransportpropertiesofinsub07subgasub03subasquantumwellmosfets
AT hyeonbhinjo impactofsulfurpassivationoncarriertransportpropertiesofinsub07subgasub03subasquantumwellmosfets
AT ingeunlee impactofsulfurpassivationoncarriertransportpropertiesofinsub07subgasub03subasquantumwellmosfets
AT taewookim impactofsulfurpassivationoncarriertransportpropertiesofinsub07subgasub03subasquantumwellmosfets
AT daehyunkim impactofsulfurpassivationoncarriertransportpropertiesofinsub07subgasub03subasquantumwellmosfets
_version_ 1724196285088530432