On the double Lusin condition and convergence theorem for Kurzweil-Henstock type integrals
Equiintegrability in a compact interval $E$ may be defined as a uniform integrability property that involves both the integrand $f_n$ and the corresponding primitive $F_n$. The pointwise convergence of the integrands $f_n$ to some $f$ and the equiintegrability of the functions $f_n$ together imply t...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Institute of Mathematics of the Czech Academy of Science
2016-07-01
|
Series: | Mathematica Bohemica |
Subjects: | |
Online Access: | http://mb.math.cas.cz/full/141/2/mb141_2_4.pdf |