E2F1 Hinders Skin Wound Healing by Repressing Vascular Endothelial Growth Factor (VEGF) Expression, Neovascularization, and Macrophage Recruitment.

Refractory surface of wound and dermal chronic ulcer are largely attributed to poor neovascularization. We have previously shown that E2F1 suppresses VEGF expression in the ischemic heart, and that genetic deletion of E2F1 leads to better cardiac recovery. However, whether E2F1 has a role in dermal...

Full description

Bibliographic Details
Main Authors: Ningning Wang, Yiping Wu, Ning Zeng, Haiping Wang, Pei Deng, Yi Xu, Youping Feng, Hong Zeng, Hongxia Yang, Kai Hou, Andrew Wang, Keshav Parthasarathy, Samaksh Goyal, Gangjian Qin, Min Wu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4973919?pdf=render
Description
Summary:Refractory surface of wound and dermal chronic ulcer are largely attributed to poor neovascularization. We have previously shown that E2F1 suppresses VEGF expression in the ischemic heart, and that genetic deletion of E2F1 leads to better cardiac recovery. However, whether E2F1 has a role in dermal wound healing is currently not known.Skin wounds were surgically induced in E2F1-null (E2F1-/-) mice and WT littermates. E2F1-/- displayed an accelerated wound healing including wound closure, dermal thickening and collagen deposition, which was associated with an increased endothelial cell proliferation and greater vessel density in the border zone of the wound. Furthermore, more macrophages were recruited to the skin lesions and the level of VEGF expression was markedly higher in E2F1-/- than in WT mice.E2F1 hinders skin wound healing by suppressing VEGF expression, neovascularization, and macrophage recruitment. Strategies that target E2F1 may enhance wound healing.
ISSN:1932-6203