Uniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvalues

In this note we analyze how perturbations of a ball $ B_r \subset \mathbb{R}^n$ behaves in terms of their first (non-trivial) Neumann and Dirichlet $\infty$-eigenvalues when a volume constraint $\mathscr{L}^n(\Omega) = \mathscr{L}^n( B_r)$ is imposed. Our main result states that $\Omega$ is u...

Full description

Bibliographic Details
Main Authors: Joao Vitor da Silva, Julio D. Rossi, Ariel M. Salort
Format: Article
Language:English
Published: Texas State University 2018-01-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2018/07/abstr.html