On Regular Elements in an Incline
Inclines are additively idempotent semirings in which products are less than (or) equal to either factor. Necessary and sufficient conditions for an element in an incline to be regular are obtained. It is proved that every regular incline is a distributive lattice. The existence of the Moore-Penrose...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2010-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2010/903063 |