Monitoring Statistics and Tuning of Kernel Principal Component Analysis With Radial Basis Function Kernels
Kernel Principal Component Analysis (KPCA) using Radial Basis Function (RBF) kernels can capture data nonlinearity by projecting the original variable space to a high-dimensional kernel feature space and obtaining the kernel principal components. This article examines the tuning of the kernel width...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9241766/ |