Improvement of Electrical Performance in Heterostructure Junctionless TFET Based on Dual Material Gate

In this paper, a dual metallic material gate heterostructure junctionless tunnel field-effect transistor (DMMG-HJLTFET) is proposed and investigated. We use the Si/SiGe heterostructure at the source/channel interface to improve the band to band tunneling (BTBT) rate, and introduce a sandwich stack (...

Full description

Bibliographic Details
Main Authors: Haiwu Xie, Hongxia Liu, Shulong Wang, Shupeng Chen, Tao Han, Wei Li
Format: Article
Language:English
Published: MDPI AG 2019-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/1/126
id doaj-93480c8282734bd9935254f8299c62cb
record_format Article
spelling doaj-93480c8282734bd9935254f8299c62cb2020-11-25T01:30:10ZengMDPI AGApplied Sciences2076-34172019-12-0110112610.3390/app10010126app10010126Improvement of Electrical Performance in Heterostructure Junctionless TFET Based on Dual Material GateHaiwu Xie0Hongxia Liu1Shulong Wang2Shupeng Chen3Tao Han4Wei Li5Key Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, the School of Microelectronics, Xidian University, Xi’an 710071, ChinaKey Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, the School of Microelectronics, Xidian University, Xi’an 710071, ChinaKey Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, the School of Microelectronics, Xidian University, Xi’an 710071, ChinaKey Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, the School of Microelectronics, Xidian University, Xi’an 710071, ChinaKey Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, the School of Microelectronics, Xidian University, Xi’an 710071, ChinaKey Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, the School of Microelectronics, Xidian University, Xi’an 710071, ChinaIn this paper, a dual metallic material gate heterostructure junctionless tunnel field-effect transistor (DMMG-HJLTFET) is proposed and investigated. We use the Si/SiGe heterostructure at the source/channel interface to improve the band to band tunneling (BTBT) rate, and introduce a sandwich stack (GaAs/Si/GaAs) at the drain region to suppress the OFF-state current and ambiplolar current. Simultaneously, to further decrease ambipolar current, the gate electrode is divided into three parts namely auxiliary gate (M1), control gate (M2), and tunnel gate (M3) with workfunctions &#934;<sub>M1</sub>, &#934;<sub>M2</sub> and &#934;<sub>M3</sub>, respectively, where &#934;<sub>M1</sub> = &#934;<sub>M3</sub> &lt; &#934;<sub>M2</sub>. Simulation results indicate that DMMG-HJLTFET provides superior performance in terms of logic and analog/RF as compared with other possible combinations, the ON-state current of the DMMG-HJLTFET increases up to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>9.04</mn> <mo>&#215;</mo> <mn>1</mn> <msup> <mn>0</mn> <mrow> <mo>&#8722;</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> A/&#956;m, and the maximum g<sub>m</sub> (which determine the analog performance of devices) of DMMG-HJLTFET is <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1.11</mn> <mo>&#215;</mo> <mn>1</mn> <msup> <mn>0</mn> <mrow> <mo>&#8722;</mo> <mn>5</mn> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> S/&#956;m at 1.0V drain-to-source voltage (Vds). Meanwhile, RF performance of devices depends on the cut-off frequency (f<sub>T</sub>) and gain bandwidth (GBW), and DMMG-HJLTFET could achieve a maximum f<sub>T</sub> of 5.84 GHz, and a maximum GBW of 0.39 GHz, respectively.https://www.mdpi.com/2076-3417/10/1/126gate material engineeringband-to-band tunneling (btbt)a sandwich stack structure (gaas/si/gaas)dual material gate heterostructure junctionless tfet (dmmg-hjltfet)
collection DOAJ
language English
format Article
sources DOAJ
author Haiwu Xie
Hongxia Liu
Shulong Wang
Shupeng Chen
Tao Han
Wei Li
spellingShingle Haiwu Xie
Hongxia Liu
Shulong Wang
Shupeng Chen
Tao Han
Wei Li
Improvement of Electrical Performance in Heterostructure Junctionless TFET Based on Dual Material Gate
Applied Sciences
gate material engineering
band-to-band tunneling (btbt)
a sandwich stack structure (gaas/si/gaas)
dual material gate heterostructure junctionless tfet (dmmg-hjltfet)
author_facet Haiwu Xie
Hongxia Liu
Shulong Wang
Shupeng Chen
Tao Han
Wei Li
author_sort Haiwu Xie
title Improvement of Electrical Performance in Heterostructure Junctionless TFET Based on Dual Material Gate
title_short Improvement of Electrical Performance in Heterostructure Junctionless TFET Based on Dual Material Gate
title_full Improvement of Electrical Performance in Heterostructure Junctionless TFET Based on Dual Material Gate
title_fullStr Improvement of Electrical Performance in Heterostructure Junctionless TFET Based on Dual Material Gate
title_full_unstemmed Improvement of Electrical Performance in Heterostructure Junctionless TFET Based on Dual Material Gate
title_sort improvement of electrical performance in heterostructure junctionless tfet based on dual material gate
publisher MDPI AG
series Applied Sciences
issn 2076-3417
publishDate 2019-12-01
description In this paper, a dual metallic material gate heterostructure junctionless tunnel field-effect transistor (DMMG-HJLTFET) is proposed and investigated. We use the Si/SiGe heterostructure at the source/channel interface to improve the band to band tunneling (BTBT) rate, and introduce a sandwich stack (GaAs/Si/GaAs) at the drain region to suppress the OFF-state current and ambiplolar current. Simultaneously, to further decrease ambipolar current, the gate electrode is divided into three parts namely auxiliary gate (M1), control gate (M2), and tunnel gate (M3) with workfunctions &#934;<sub>M1</sub>, &#934;<sub>M2</sub> and &#934;<sub>M3</sub>, respectively, where &#934;<sub>M1</sub> = &#934;<sub>M3</sub> &lt; &#934;<sub>M2</sub>. Simulation results indicate that DMMG-HJLTFET provides superior performance in terms of logic and analog/RF as compared with other possible combinations, the ON-state current of the DMMG-HJLTFET increases up to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>9.04</mn> <mo>&#215;</mo> <mn>1</mn> <msup> <mn>0</mn> <mrow> <mo>&#8722;</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> A/&#956;m, and the maximum g<sub>m</sub> (which determine the analog performance of devices) of DMMG-HJLTFET is <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1.11</mn> <mo>&#215;</mo> <mn>1</mn> <msup> <mn>0</mn> <mrow> <mo>&#8722;</mo> <mn>5</mn> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> S/&#956;m at 1.0V drain-to-source voltage (Vds). Meanwhile, RF performance of devices depends on the cut-off frequency (f<sub>T</sub>) and gain bandwidth (GBW), and DMMG-HJLTFET could achieve a maximum f<sub>T</sub> of 5.84 GHz, and a maximum GBW of 0.39 GHz, respectively.
topic gate material engineering
band-to-band tunneling (btbt)
a sandwich stack structure (gaas/si/gaas)
dual material gate heterostructure junctionless tfet (dmmg-hjltfet)
url https://www.mdpi.com/2076-3417/10/1/126
work_keys_str_mv AT haiwuxie improvementofelectricalperformanceinheterostructurejunctionlesstfetbasedondualmaterialgate
AT hongxialiu improvementofelectricalperformanceinheterostructurejunctionlesstfetbasedondualmaterialgate
AT shulongwang improvementofelectricalperformanceinheterostructurejunctionlesstfetbasedondualmaterialgate
AT shupengchen improvementofelectricalperformanceinheterostructurejunctionlesstfetbasedondualmaterialgate
AT taohan improvementofelectricalperformanceinheterostructurejunctionlesstfetbasedondualmaterialgate
AT weili improvementofelectricalperformanceinheterostructurejunctionlesstfetbasedondualmaterialgate
_version_ 1725093143137746944