Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule

In the present study, we quantitatively evaluated dielectric breakdown in silicon-based micro- and nanofluidic devices under practical electrophoretic conditions by changing the thickness of the insulating layer. At higher buffer concentration, a silicon nanofluidic device with a 100 nm or 250 nm si...

Full description

Bibliographic Details
Main Authors: Mamiko Sano, Noritada Kaji, Qiong Wu, Toyohiro Naito, Takao Yasui, Masateru Taniguchi, Tomoji Kawai, Yoshinobu Baba
Format: Article
Language:English
Published: MDPI AG 2018-04-01
Series:Micromachines
Subjects:
DNA
Online Access:http://www.mdpi.com/2072-666X/9/4/180
id doaj-93610e3bd06b4bfc934cd6a8ce4d7fac
record_format Article
spelling doaj-93610e3bd06b4bfc934cd6a8ce4d7fac2020-11-24T21:03:09ZengMDPI AGMicromachines2072-666X2018-04-019418010.3390/mi9040180mi9040180Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA MoleculeMamiko Sano0Noritada Kaji1Qiong Wu2Toyohiro Naito3Takao Yasui4Masateru Taniguchi5Tomoji Kawai6Yoshinobu Baba7Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, JapanDepartment of Applied Chemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, JapanDepartment of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, JapanGraduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, JapanDepartment of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, JapanInstitute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka-cho, Ibaraki, Osaka 567-0047, JapanInstitute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka-cho, Ibaraki, Osaka 567-0047, JapanDepartment of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, JapanIn the present study, we quantitatively evaluated dielectric breakdown in silicon-based micro- and nanofluidic devices under practical electrophoretic conditions by changing the thickness of the insulating layer. At higher buffer concentration, a silicon nanofluidic device with a 100 nm or 250 nm silicon dioxide layer tolerated dielectric breakdown up to ca. 10 V/cm, thereby allowing successful electrophoretic migration of a single DNA molecule through a nanochannel. The observed DNA migration behavior suggested that parameters, such as thickness of the insulating layer, tolerance of dielectric breakdown, and bonding status of silicon and glass substrate, should be optimized to achieve successful electrophoretic transport of a DNA molecule through a nanopore for nanopore-based DNA sequencing applications.http://www.mdpi.com/2072-666X/9/4/180dielectric breakdowninsulationsilicon devicesDNAelectrophoresis
collection DOAJ
language English
format Article
sources DOAJ
author Mamiko Sano
Noritada Kaji
Qiong Wu
Toyohiro Naito
Takao Yasui
Masateru Taniguchi
Tomoji Kawai
Yoshinobu Baba
spellingShingle Mamiko Sano
Noritada Kaji
Qiong Wu
Toyohiro Naito
Takao Yasui
Masateru Taniguchi
Tomoji Kawai
Yoshinobu Baba
Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule
Micromachines
dielectric breakdown
insulation
silicon devices
DNA
electrophoresis
author_facet Mamiko Sano
Noritada Kaji
Qiong Wu
Toyohiro Naito
Takao Yasui
Masateru Taniguchi
Tomoji Kawai
Yoshinobu Baba
author_sort Mamiko Sano
title Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule
title_short Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule
title_full Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule
title_fullStr Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule
title_full_unstemmed Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule
title_sort quantitative evaluation of dielectric breakdown of silicon micro- and nanofluidic devices for electrophoretic transport of a single dna molecule
publisher MDPI AG
series Micromachines
issn 2072-666X
publishDate 2018-04-01
description In the present study, we quantitatively evaluated dielectric breakdown in silicon-based micro- and nanofluidic devices under practical electrophoretic conditions by changing the thickness of the insulating layer. At higher buffer concentration, a silicon nanofluidic device with a 100 nm or 250 nm silicon dioxide layer tolerated dielectric breakdown up to ca. 10 V/cm, thereby allowing successful electrophoretic migration of a single DNA molecule through a nanochannel. The observed DNA migration behavior suggested that parameters, such as thickness of the insulating layer, tolerance of dielectric breakdown, and bonding status of silicon and glass substrate, should be optimized to achieve successful electrophoretic transport of a DNA molecule through a nanopore for nanopore-based DNA sequencing applications.
topic dielectric breakdown
insulation
silicon devices
DNA
electrophoresis
url http://www.mdpi.com/2072-666X/9/4/180
work_keys_str_mv AT mamikosano quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule
AT noritadakaji quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule
AT qiongwu quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule
AT toyohironaito quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule
AT takaoyasui quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule
AT masaterutaniguchi quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule
AT tomojikawai quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule
AT yoshinobubaba quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule
_version_ 1716774026533142528