MRI features predict p53 status in lower-grade gliomas via a machine-learning approach
Background: P53 mutation status is a pivotal biomarker for gliomas. Here, we developed a machine-learning model to predict p53 status in lower-grade gliomas based on radiomic features extracted from conventional magnetic resonance (MR) images. Methods: Preoperative MR images were retrospectively obt...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2018-01-01
|
Series: | NeuroImage: Clinical |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2213158217302723 |