Design of the control software of a UUV for oceanographic monitoring using a component model and framework with flexible deployment.

Unmanned Underwater Vehicles (UUVs) explore different habitats with a view to protecting and managing them. They are developed to overcome scientific challenges and the engineering problems caused by the unstructured and hazardous underwater environment in which they operate. Their development bears...

Full description

Bibliographic Details
Main Authors: Francisco Ortiz, Antonio Guerrero, Francisco Sánchez Ledesma, Francisco García Córdova, Diego Alonso, Javier Gilabert
Format: Article
Language:Spanish
Published: Universitat Politecnica de Valencia 2015-07-01
Series:Revista Iberoamericana de Automática e Informática Industrial RIAI
Subjects:
Online Access:https://polipapers.upv.es/index.php/RIAI/article/view/9366
Description
Summary:Unmanned Underwater Vehicles (UUVs) explore different habitats with a view to protecting and managing them. They are developed to overcome scientific challenges and the engineering problems caused by the unstructured and hazardous underwater environment in which they operate. Their development bears the same difficulties as the rest of service robots (hardware heterogeneity, sensor uncertainty, software complexity, etc.) as well as other particular from the domain, like the underwater environment, energy constraints, and autonomy. This article describes the AEGIR UUV, used as a test bed for implementation of control strategies and oceanographic mission in the Mar Menor area in Spain, which is one of the largest coastal lagoons in Europe. It also describes the development of a tool chain that follows a model-driven approach, which has been used in the design of the vehicle control software as well as a component-based framework that provides the runtime support of the application and enables its flexible deployment in nodes, processes and threads and pre-verification of concurrent behavior.
ISSN:1697-7912
1697-7920