Deep Neural Networks for Human Activity Recognition With Wearable Sensors: Leave-One-Subject-Out Cross-Validation for Model Selection
Human Activity Recognition (HAR) has been attracting significant research attention because of the increasing availability of environmental and wearable sensors for collecting HAR data. In recent years, deep learning approaches have demonstrated a great success due to their ability to model complex...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9144538/ |