Dynamin-2 mutations linked to Centronuclear Myopathy impair actin-dependent trafficking in muscle cells

Abstract Dynamin-2 is a ubiquitously expressed GTP-ase that mediates membrane remodeling. Recent findings indicate that dynamin-2 also regulates actin dynamics. Mutations in dynamin-2 cause dominant centronuclear myopathy (CNM), a congenital myopathy characterized by progressive weakness and atrophy...

Full description

Bibliographic Details
Main Authors: Arlek M. González-Jamett, Ximena Baez-Matus, María José Olivares, Fernando Hinostroza, Maria José Guerra-Fernández, Jacqueline Vasquez-Navarrete, Mai Thao Bui, Pascale Guicheney, Norma Beatriz Romero, Jorge A. Bevilacqua, Marc Bitoun, Pablo Caviedes, Ana M. Cárdenas
Format: Article
Language:English
Published: Nature Publishing Group 2017-07-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-017-04418-w
Description
Summary:Abstract Dynamin-2 is a ubiquitously expressed GTP-ase that mediates membrane remodeling. Recent findings indicate that dynamin-2 also regulates actin dynamics. Mutations in dynamin-2 cause dominant centronuclear myopathy (CNM), a congenital myopathy characterized by progressive weakness and atrophy of skeletal muscles. However, the muscle-specific roles of dynamin-2 affected by these mutations remain elusive. Here we show that, in muscle cells, the GTP-ase activity of dynamin-2 is involved in de novo actin polymerization as well as in actin-mediated trafficking of the glucose transporter GLUT4. Expression of dynamin-2 constructs carrying CNM-linked mutations disrupted the formation of new actin filaments as well as the stimulus-induced translocation of GLUT4 to the plasma membrane. Similarly, mature muscle fibers isolated from heterozygous knock-in mice that harbor the dynamin-2 mutation p.R465W, an animal model of CNM, exhibited altered actin organization, reduced actin polymerization and impaired insulin-induced translocation of GLUT4 to the sarcolemma. Moreover, GLUT4 displayed aberrant perinuclear accumulation in biopsies from CNM patients carrying dynamin-2 mutations, further suggesting trafficking defects. These results suggest that dynamin-2 is a key regulator of actin dynamics and GLUT4 trafficking in muscle cells. Our findings also support a model in which impairment of actin-dependent trafficking contributes to the pathological mechanism in dynamin-2-associated CNM.
ISSN:2045-2322