Surface of Maximums of AR(2) Process Spectral Densities and its Application in Time Series Statistics

Background. In the problem on probabilities of large deviations of discrete time and sub-Gaussian AR(2) noise non­li­near regression model parameter least squares estimate a constant is determined that controls the rate of exponential convergence to zero of indicated probabilities. Objective. The ai...

Full description

Bibliographic Details
Main Authors: Alexander V. Ivanov, Nataliia M. Karpova
Format: Article
Language:English
Published: Igor Sikorsky Kyiv Polytechnic Institute 2017-09-01
Series:Наукові вісті Національного технічного університету України "Київський політехнічний інститут"
Subjects:
Online Access:http://bulletin.kpi.ua/article/view/106224
id doaj-9d3872d9f1214d4ebd65a37b8fb049e8
record_format Article
spelling doaj-9d3872d9f1214d4ebd65a37b8fb049e82021-02-02T05:44:04ZengIgor Sikorsky Kyiv Polytechnic InstituteНаукові вісті Національного технічного університету України "Київський політехнічний інститут"1810-05462519-88902017-09-0104394610.20535/1810-0546.2017.4.106224106224Surface of Maximums of AR(2) Process Spectral Densities and its Application in Time Series StatisticsAlexander V. Ivanov0Nataliia M. Karpova1Igor Sikorsky KPIIgor Sikorsky KPIBackground. In the problem on probabilities of large deviations of discrete time and sub-Gaussian AR(2) noise non­li­near regression model parameter least squares estimate a constant is determined that controls the rate of exponential convergence to zero of indicated probabilities. Objective. The aim of the paper is to find the surface of maximums of AR(2) process spectral densities in the domain of its stationarity in explicit form. Methods. The results were obtained on the use of methodology developed in the works by A. Sieders, K. Dzhaparidze (1987), A.V. Ivanov (1997, 2016) and standard Calculus methods. Results. A complex formula that describes a continuous surface of maximums of AR(2) process spectral densities assig­ned on the stationary triangle of the time series of this type is obtained. Conclusions. The obtained formula of surface of maximums of noise spectral densities gives an opportunity to realize for which values of AR(2) process characteristic polynomial coefficients it is possible to look for greater rate of convergence to zero of the probabilities of large deviations of the considered estimates.http://bulletin.kpi.ua/article/view/106224Nonlinear regression modelLeast squares estimateSub-Gaussian white noiseAR(2) processProbabilities of large deviationsSurface of maximums of spectral densities
collection DOAJ
language English
format Article
sources DOAJ
author Alexander V. Ivanov
Nataliia M. Karpova
spellingShingle Alexander V. Ivanov
Nataliia M. Karpova
Surface of Maximums of AR(2) Process Spectral Densities and its Application in Time Series Statistics
Наукові вісті Національного технічного університету України "Київський політехнічний інститут"
Nonlinear regression model
Least squares estimate
Sub-Gaussian white noise
AR(2) process
Probabilities of large deviations
Surface of maximums of spectral densities
author_facet Alexander V. Ivanov
Nataliia M. Karpova
author_sort Alexander V. Ivanov
title Surface of Maximums of AR(2) Process Spectral Densities and its Application in Time Series Statistics
title_short Surface of Maximums of AR(2) Process Spectral Densities and its Application in Time Series Statistics
title_full Surface of Maximums of AR(2) Process Spectral Densities and its Application in Time Series Statistics
title_fullStr Surface of Maximums of AR(2) Process Spectral Densities and its Application in Time Series Statistics
title_full_unstemmed Surface of Maximums of AR(2) Process Spectral Densities and its Application in Time Series Statistics
title_sort surface of maximums of ar(2) process spectral densities and its application in time series statistics
publisher Igor Sikorsky Kyiv Polytechnic Institute
series Наукові вісті Національного технічного університету України "Київський політехнічний інститут"
issn 1810-0546
2519-8890
publishDate 2017-09-01
description Background. In the problem on probabilities of large deviations of discrete time and sub-Gaussian AR(2) noise non­li­near regression model parameter least squares estimate a constant is determined that controls the rate of exponential convergence to zero of indicated probabilities. Objective. The aim of the paper is to find the surface of maximums of AR(2) process spectral densities in the domain of its stationarity in explicit form. Methods. The results were obtained on the use of methodology developed in the works by A. Sieders, K. Dzhaparidze (1987), A.V. Ivanov (1997, 2016) and standard Calculus methods. Results. A complex formula that describes a continuous surface of maximums of AR(2) process spectral densities assig­ned on the stationary triangle of the time series of this type is obtained. Conclusions. The obtained formula of surface of maximums of noise spectral densities gives an opportunity to realize for which values of AR(2) process characteristic polynomial coefficients it is possible to look for greater rate of convergence to zero of the probabilities of large deviations of the considered estimates.
topic Nonlinear regression model
Least squares estimate
Sub-Gaussian white noise
AR(2) process
Probabilities of large deviations
Surface of maximums of spectral densities
url http://bulletin.kpi.ua/article/view/106224
work_keys_str_mv AT alexandervivanov surfaceofmaximumsofar2processspectraldensitiesanditsapplicationintimeseriesstatistics
AT nataliiamkarpova surfaceofmaximumsofar2processspectraldensitiesanditsapplicationintimeseriesstatistics
_version_ 1724302851430154240