Long-term exposure of human endothelial cells to metformin modulates miRNAs and isomiRs

Abstract Increasing evidence suggest that the glucose-lowering drug metformin exerts a valuable anti-senescence role. The ability of metformin to affect the biogenesis of selected microRNAs (miRNAs) was recently suggested. MicroRNA isoforms (isomiRs) are distinct variations of miRNA sequences, harbo...

Full description

Bibliographic Details
Main Authors: Angelica Giuliani, Eric Londin, Manuela Ferracin, Emanuela Mensà, Francesco Prattichizzo, Deborah Ramini, Fiorella Marcheselli, Rina Recchioni, Maria Rita Rippo, Massimiliano Bonafè, Isidore Rigoutsos, Fabiola Olivieri, Jacopo Sabbatinelli
Format: Article
Language:English
Published: Nature Publishing Group 2020-12-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-020-78871-5
id doaj-9db56585c5b24fc0af64d8a7a31bcb9d
record_format Article
spelling doaj-9db56585c5b24fc0af64d8a7a31bcb9d2020-12-13T12:31:45ZengNature Publishing GroupScientific Reports2045-23222020-12-0110111410.1038/s41598-020-78871-5Long-term exposure of human endothelial cells to metformin modulates miRNAs and isomiRsAngelica Giuliani0Eric Londin1Manuela Ferracin2Emanuela Mensà3Francesco Prattichizzo4Deborah Ramini5Fiorella Marcheselli6Rina Recchioni7Maria Rita Rippo8Massimiliano Bonafè9Isidore Rigoutsos10Fabiola Olivieri11Jacopo Sabbatinelli12Department of Clinical and Molecular Sciences, Università Politecnica Delle MarcheComputational Medicine Center, Thomas Jefferson UniversityDepartment of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of BolognaDepartment of Clinical and Molecular Sciences, Università Politecnica Delle MarcheIRCCS MultiMedicaDepartment of Clinical and Molecular Sciences, Università Politecnica Delle MarcheCenter of Clinical Pathology and Innovative Therapy, IRCCS INRCACenter of Clinical Pathology and Innovative Therapy, IRCCS INRCADepartment of Clinical and Molecular Sciences, Università Politecnica Delle MarcheDepartment of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of BolognaComputational Medicine Center, Thomas Jefferson UniversityDepartment of Clinical and Molecular Sciences, Università Politecnica Delle MarcheDepartment of Clinical and Molecular Sciences, Università Politecnica Delle MarcheAbstract Increasing evidence suggest that the glucose-lowering drug metformin exerts a valuable anti-senescence role. The ability of metformin to affect the biogenesis of selected microRNAs (miRNAs) was recently suggested. MicroRNA isoforms (isomiRs) are distinct variations of miRNA sequences, harboring addition or deletion of one or more nucleotides at the 5′ and/or 3′ ends of the canonical miRNA sequence. We performed a comprehensive analysis of miRNA and isomiR profile in human endothelial cells undergoing replicative senescence in presence of metformin. Metformin treatment was associated with the differential expression of 27 miRNAs (including miR-100-5p, -125b-5p, -654-3p, -217 and -216a-3p/5p). IsomiR analysis revealed that almost 40% of the total miRNA pool was composed by non-canonical sequences. Metformin significantly affects the relative abundance of 133 isomiRs, including the non-canonical forms of the aforementioned miRNAs. Pathway enrichment analysis suggested that pathways associated with proliferation and nutrient sensing are modulated by metformin-regulated miRNAs and that some of the regulated isomiRs (e.g. the 5′ miR-217 isomiR) are endowed with alternative seed sequences and share less than half of the predicted targets with the canonical form. Our results show that metformin reshapes the senescence-associated miRNA/isomiR patterns of endothelial cells, thus expanding our insight into the cell senescence molecular machinery.https://doi.org/10.1038/s41598-020-78871-5
collection DOAJ
language English
format Article
sources DOAJ
author Angelica Giuliani
Eric Londin
Manuela Ferracin
Emanuela Mensà
Francesco Prattichizzo
Deborah Ramini
Fiorella Marcheselli
Rina Recchioni
Maria Rita Rippo
Massimiliano Bonafè
Isidore Rigoutsos
Fabiola Olivieri
Jacopo Sabbatinelli
spellingShingle Angelica Giuliani
Eric Londin
Manuela Ferracin
Emanuela Mensà
Francesco Prattichizzo
Deborah Ramini
Fiorella Marcheselli
Rina Recchioni
Maria Rita Rippo
Massimiliano Bonafè
Isidore Rigoutsos
Fabiola Olivieri
Jacopo Sabbatinelli
Long-term exposure of human endothelial cells to metformin modulates miRNAs and isomiRs
Scientific Reports
author_facet Angelica Giuliani
Eric Londin
Manuela Ferracin
Emanuela Mensà
Francesco Prattichizzo
Deborah Ramini
Fiorella Marcheselli
Rina Recchioni
Maria Rita Rippo
Massimiliano Bonafè
Isidore Rigoutsos
Fabiola Olivieri
Jacopo Sabbatinelli
author_sort Angelica Giuliani
title Long-term exposure of human endothelial cells to metformin modulates miRNAs and isomiRs
title_short Long-term exposure of human endothelial cells to metformin modulates miRNAs and isomiRs
title_full Long-term exposure of human endothelial cells to metformin modulates miRNAs and isomiRs
title_fullStr Long-term exposure of human endothelial cells to metformin modulates miRNAs and isomiRs
title_full_unstemmed Long-term exposure of human endothelial cells to metformin modulates miRNAs and isomiRs
title_sort long-term exposure of human endothelial cells to metformin modulates mirnas and isomirs
publisher Nature Publishing Group
series Scientific Reports
issn 2045-2322
publishDate 2020-12-01
description Abstract Increasing evidence suggest that the glucose-lowering drug metformin exerts a valuable anti-senescence role. The ability of metformin to affect the biogenesis of selected microRNAs (miRNAs) was recently suggested. MicroRNA isoforms (isomiRs) are distinct variations of miRNA sequences, harboring addition or deletion of one or more nucleotides at the 5′ and/or 3′ ends of the canonical miRNA sequence. We performed a comprehensive analysis of miRNA and isomiR profile in human endothelial cells undergoing replicative senescence in presence of metformin. Metformin treatment was associated with the differential expression of 27 miRNAs (including miR-100-5p, -125b-5p, -654-3p, -217 and -216a-3p/5p). IsomiR analysis revealed that almost 40% of the total miRNA pool was composed by non-canonical sequences. Metformin significantly affects the relative abundance of 133 isomiRs, including the non-canonical forms of the aforementioned miRNAs. Pathway enrichment analysis suggested that pathways associated with proliferation and nutrient sensing are modulated by metformin-regulated miRNAs and that some of the regulated isomiRs (e.g. the 5′ miR-217 isomiR) are endowed with alternative seed sequences and share less than half of the predicted targets with the canonical form. Our results show that metformin reshapes the senescence-associated miRNA/isomiR patterns of endothelial cells, thus expanding our insight into the cell senescence molecular machinery.
url https://doi.org/10.1038/s41598-020-78871-5
work_keys_str_mv AT angelicagiuliani longtermexposureofhumanendothelialcellstometforminmodulatesmirnasandisomirs
AT ericlondin longtermexposureofhumanendothelialcellstometforminmodulatesmirnasandisomirs
AT manuelaferracin longtermexposureofhumanendothelialcellstometforminmodulatesmirnasandisomirs
AT emanuelamensa longtermexposureofhumanendothelialcellstometforminmodulatesmirnasandisomirs
AT francescoprattichizzo longtermexposureofhumanendothelialcellstometforminmodulatesmirnasandisomirs
AT deborahramini longtermexposureofhumanendothelialcellstometforminmodulatesmirnasandisomirs
AT fiorellamarcheselli longtermexposureofhumanendothelialcellstometforminmodulatesmirnasandisomirs
AT rinarecchioni longtermexposureofhumanendothelialcellstometforminmodulatesmirnasandisomirs
AT mariaritarippo longtermexposureofhumanendothelialcellstometforminmodulatesmirnasandisomirs
AT massimilianobonafe longtermexposureofhumanendothelialcellstometforminmodulatesmirnasandisomirs
AT isidorerigoutsos longtermexposureofhumanendothelialcellstometforminmodulatesmirnasandisomirs
AT fabiolaolivieri longtermexposureofhumanendothelialcellstometforminmodulatesmirnasandisomirs
AT jacoposabbatinelli longtermexposureofhumanendothelialcellstometforminmodulatesmirnasandisomirs
_version_ 1724384680064581632