Coefficient inequalities for a subclass of Bazilevič functions
Let f be analytic in D={z:|z| < 1}{\mathbb{D}}=\{z:|z\mathrm{|\hspace{0.17em}\lt \hspace{0.17em}1\}} with f(z)=z+∑n=2∞anznf(z)=z+{\sum }_{n\mathrm{=2}}^{\infty }{a}_{n}{z}^{n}, and for α ≥ 0 and 0 < λ ≤ 1, let ℬ1(α,λ){ {\mathcal B} }_{1}(\alpha ,\lambda ) denote the subclass...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2020-05-01
|
Series: | Demonstratio Mathematica |
Subjects: | |
Online Access: | http://www.degruyter.com/view/j/dema.2020.53.issue-1/dema-2020-0040/dema-2020-0040.xml?format=INT |