Strong Unique Continuation for Solutions of a p(x)-Laplacian Problem

We study the strong unique continuation property for solutions to the quasilinear elliptic equation -div(|∇u|p(x)-2∇u)+V(x)|u|p(x)-2u=0  in  Ω where V(x)∈LN/p(x)(Ω), Ω is a smooth bounded domain in ℝN, and 1<p(x)<N for x in Ω.

Bibliographic Details
Main Authors: Johnny Cuadro, Gabriel López
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2012/108671