Conditionally approximately convex functions
Let X be a real normed space, V be a subset of X and α: [0, ∞) → [0, ∞] be a nondecreasing function. We say that a function f : V → [−∞, ∞] is conditionally α-convex if for each convex combination ∑i=0ntivi$\sum\nolimits_{i = 0}^n {t_i v_i }$ of elements from V such that ∑i=0ntivi∈V$\sum\nolimits...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2016-03-01
|
Series: | Demonstratio Mathematica |
Subjects: | |
Online Access: | http://www.degruyter.com/view/j/dema.2016.49.issue-1/dema-2016-0002/dema-2016-0002.xml?format=INT |