Conditionally approximately convex functions

Let X be a real normed space, V be a subset of X and α: [0, ∞) → [0, ∞] be a nondecreasing function. We say that a function f : V → [−∞, ∞] is conditionally α-convex if for each convex combination ∑i=0ntivi$\sum\nolimits_{i = 0}^n {t_i v_i }$ of elements from V such that ∑i=0ntivi∈V$\sum\nolimits...

Full description

Bibliographic Details
Main Authors: Najdecki Adam, Tabor Józef
Format: Article
Language:English
Published: De Gruyter 2016-03-01
Series:Demonstratio Mathematica
Subjects:
Online Access:http://www.degruyter.com/view/j/dema.2016.49.issue-1/dema-2016-0002/dema-2016-0002.xml?format=INT