On C-embedded subspaces of the Sorgenfrey plane
We show that for a subspace $E\subseteq\{(x,-x):x\in\mathbb R\}$ of the Sorgenfrey plane $\mathbb S^2$ the following conditions are equivalent: (i) $E$ is $C$-embedded in $\mathbb S^2$; (ii) $E$ is $C^*$-embedded in $\mathbb S^2$; (iii) $E$ is a countable $G_\delta$-subspace of $\rr$ and (iv) $E$ is...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitat Politècnica de València
2015-02-01
|
Series: | Applied General Topology |
Subjects: | |
Online Access: | http://polipapers.upv.es/index.php/AGT/article/view/3161 |