On finite A-perfect abelian groups
Let $G$ be a group and $A = Aut(G)$ be the group of automorphisms of $G$. Then the element $[g,alpha] = g^{-1}alpha(g)$ is an autocommutator of $gin G$ and $alphain A$. Also, the autocommutator subgroup of G is defined to be $K(G) =< [g,alpha] gin G, alphain A >$, which is a characteristic sub...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Isfahan
2012-09-01
|
Series: | International Journal of Group Theory |
Subjects: | |
Online Access: | http://www.theoryofgroups.ir/?_action=showPDF&article=764&_ob=c0e46ef10fc8cc8252147940e51d0023&fileName=full_text.pdf |