Universal centers in the cubic trigonometric Abel equation

We study the center problem for the trigonometric Abel equation $d \rho/ d \theta= a_1 (\theta) \rho^2 + a_2(\theta) \rho^3,$ where $a_1(\theta)$ and $a_2(\theta)$ are cubic trigonometric polynomials in $\theta$. This problem is closely connected with the classical Poincaré center problem for plana...

Full description

Bibliographic Details
Main Authors: Jaume Giné, Maite Grau, Xavier Santallusia
Format: Article
Language:English
Published: University of Szeged 2014-02-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=2768