Universal centers in the cubic trigonometric Abel equation
We study the center problem for the trigonometric Abel equation $d \rho/ d \theta= a_1 (\theta) \rho^2 + a_2(\theta) \rho^3,$ where $a_1(\theta)$ and $a_2(\theta)$ are cubic trigonometric polynomials in $\theta$. This problem is closely connected with the classical Poincaré center problem for plana...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2014-02-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=2768 |