Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers
Non-small cell lung cancers (NSCLCs) establish a highly immunosuppressive tumor microenvironment supporting cancer growth. To interfere with cancer-mediated immunosuppression, selective immune-checkpoint inhibitors (ICIs) have been approved as a standard-of-care treatment for NSCLCs. However, the ma...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2021-01-01
|
Series: | OncoImmunology |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/2162402X.2021.1885778 |
id |
doaj-a9f07968906048c0afdd69db5a883213 |
---|---|
record_format |
Article |
spelling |
doaj-a9f07968906048c0afdd69db5a8832132021-03-02T13:49:51ZengTaylor & Francis GroupOncoImmunology2162-402X2021-01-0110110.1080/2162402X.2021.18857781885778Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancersDörthe Masemann0Ramona Meissner1Tanja Schied2Brian D Lichty3Ulf R Rapp4Viktor Wixler5Stephan Ludwig6University of MuensterUniversity of MuensterInstitute of Virology, University of MuensterMcMaster University, HamiltonMax Planck Institute for Heart and Lung ResearchUniversity of MuensterUniversity of MuensterNon-small cell lung cancers (NSCLCs) establish a highly immunosuppressive tumor microenvironment supporting cancer growth. To interfere with cancer-mediated immunosuppression, selective immune-checkpoint inhibitors (ICIs) have been approved as a standard-of-care treatment for NSCLCs. However, the majority of patients poorly respond to ICI-based immunotherapies. Oncolytic viruses are amongst the many promising immunomodulatory treatments tested as standalone therapy or in combination with ICIs to improve therapeutic outcome. Previously, we demonstrated the oncolytic and immunomodulatory efficacy of low-pathogenic influenza Aviruses (IAVs) against NSCLCs in immunocompetent transgenic mice with alung-specific overexpression of active Raf kinase (Raf-BxB). IAV infection not only resulted in significant primary virus-induced oncolysis, but also caused afunctional reversion of tumor-associated macrophages (TAMs) comprising additional anti-cancer activity. Here we show that NSCLCs as well as TAMs and cytotoxic immune cells overexpress IC molecules of the PD-L2/PD-1 and B7-H3 signaling axes. Thus, we aimed to combine oncolytic IAV-infection with ICIs to exploit the benefits of both anti-cancer approaches. Strikingly, IAV infection combined with the novel B7-H3 ICI led to increased levels of M1-polarized alveolar macrophages and increased lung infiltration by cytotoxic Tlymphocytes, which finally resulted in significantly improved oncolysis of about 80% of existing tumors. In contrast, application of clinically approved α-PD-1 IC antibodies alone or in combination with oncolytic IAV did not provide additional oncolytic or immunomodulatory efficacy. Thus, individualized therapy with synergistically acting oncolytic IAV and B7-H3 ICI might be an innovative future approach to target NSCLCs that are resistant to approved ICIs in patients.http://dx.doi.org/10.1080/2162402X.2021.1885778lung canceroncolytic virusimmune-checkpoint inhibitorcancer immunosuppressionimmunotherapy |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Dörthe Masemann Ramona Meissner Tanja Schied Brian D Lichty Ulf R Rapp Viktor Wixler Stephan Ludwig |
spellingShingle |
Dörthe Masemann Ramona Meissner Tanja Schied Brian D Lichty Ulf R Rapp Viktor Wixler Stephan Ludwig Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers OncoImmunology lung cancer oncolytic virus immune-checkpoint inhibitor cancer immunosuppression immunotherapy |
author_facet |
Dörthe Masemann Ramona Meissner Tanja Schied Brian D Lichty Ulf R Rapp Viktor Wixler Stephan Ludwig |
author_sort |
Dörthe Masemann |
title |
Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers |
title_short |
Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers |
title_full |
Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers |
title_fullStr |
Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers |
title_full_unstemmed |
Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers |
title_sort |
synergistic anti-tumor efficacy of oncolytic influenza viruses and b7-h3 immune- checkpoint inhibitors against ic-resistant lung cancers |
publisher |
Taylor & Francis Group |
series |
OncoImmunology |
issn |
2162-402X |
publishDate |
2021-01-01 |
description |
Non-small cell lung cancers (NSCLCs) establish a highly immunosuppressive tumor microenvironment supporting cancer growth. To interfere with cancer-mediated immunosuppression, selective immune-checkpoint inhibitors (ICIs) have been approved as a standard-of-care treatment for NSCLCs. However, the majority of patients poorly respond to ICI-based immunotherapies. Oncolytic viruses are amongst the many promising immunomodulatory treatments tested as standalone therapy or in combination with ICIs to improve therapeutic outcome. Previously, we demonstrated the oncolytic and immunomodulatory efficacy of low-pathogenic influenza Aviruses (IAVs) against NSCLCs in immunocompetent transgenic mice with alung-specific overexpression of active Raf kinase (Raf-BxB). IAV infection not only resulted in significant primary virus-induced oncolysis, but also caused afunctional reversion of tumor-associated macrophages (TAMs) comprising additional anti-cancer activity. Here we show that NSCLCs as well as TAMs and cytotoxic immune cells overexpress IC molecules of the PD-L2/PD-1 and B7-H3 signaling axes. Thus, we aimed to combine oncolytic IAV-infection with ICIs to exploit the benefits of both anti-cancer approaches. Strikingly, IAV infection combined with the novel B7-H3 ICI led to increased levels of M1-polarized alveolar macrophages and increased lung infiltration by cytotoxic Tlymphocytes, which finally resulted in significantly improved oncolysis of about 80% of existing tumors. In contrast, application of clinically approved α-PD-1 IC antibodies alone or in combination with oncolytic IAV did not provide additional oncolytic or immunomodulatory efficacy. Thus, individualized therapy with synergistically acting oncolytic IAV and B7-H3 ICI might be an innovative future approach to target NSCLCs that are resistant to approved ICIs in patients. |
topic |
lung cancer oncolytic virus immune-checkpoint inhibitor cancer immunosuppression immunotherapy |
url |
http://dx.doi.org/10.1080/2162402X.2021.1885778 |
work_keys_str_mv |
AT dorthemasemann synergisticantitumorefficacyofoncolyticinfluenzavirusesandb7h3immunecheckpointinhibitorsagainsticresistantlungcancers AT ramonameissner synergisticantitumorefficacyofoncolyticinfluenzavirusesandb7h3immunecheckpointinhibitorsagainsticresistantlungcancers AT tanjaschied synergisticantitumorefficacyofoncolyticinfluenzavirusesandb7h3immunecheckpointinhibitorsagainsticresistantlungcancers AT briandlichty synergisticantitumorefficacyofoncolyticinfluenzavirusesandb7h3immunecheckpointinhibitorsagainsticresistantlungcancers AT ulfrrapp synergisticantitumorefficacyofoncolyticinfluenzavirusesandb7h3immunecheckpointinhibitorsagainsticresistantlungcancers AT viktorwixler synergisticantitumorefficacyofoncolyticinfluenzavirusesandb7h3immunecheckpointinhibitorsagainsticresistantlungcancers AT stephanludwig synergisticantitumorefficacyofoncolyticinfluenzavirusesandb7h3immunecheckpointinhibitorsagainsticresistantlungcancers |
_version_ |
1724235030094413824 |