Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection.
Fatal outcomes of Ebola virus (EBOV) infections are typically preceded by a 'sepsis-like' syndrome and lymphopenia despite T cells being resistant to Ebola infection. The mechanisms that lead to T lymphocytes death remain largely unknown; however, the degree of lymphopenia is highly correl...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2017-05-01
|
Series: | PLoS Pathogens |
Online Access: | http://europepmc.org/articles/PMC5456411?pdf=render |
id |
doaj-aa49fa55904441469156986efb7c5c23 |
---|---|
record_format |
Article |
spelling |
doaj-aa49fa55904441469156986efb7c5c232020-11-25T02:20:16ZengPublic Library of Science (PLoS)PLoS Pathogens1553-73661553-73742017-05-01135e100639710.1371/journal.ppat.1006397Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection.Mathieu IampietroPatrick YounanAndrew NishidaMukta DuttaNdongala Michel LubakiRodrigo I SantosRichard A KoupMichael G KatzeAlexander BukreyevFatal outcomes of Ebola virus (EBOV) infections are typically preceded by a 'sepsis-like' syndrome and lymphopenia despite T cells being resistant to Ebola infection. The mechanisms that lead to T lymphocytes death remain largely unknown; however, the degree of lymphopenia is highly correlative with fatalities. Here we investigated whether the addition of EBOV or its envelope glycoprotein (GP) to isolated primary human CD4+ T cells induced cell death. We observed a significant decrease in cell viability in a GP-dependent manner, which is suggestive of a direct role of GP in T cell death. Using immunoprecipitation assays and flow cytometry, we demonstrate that EBOV directly binds to CD4+ T cells through interaction of GP with TLR4. Transcriptome analysis revealed that the addition of EBOV to CD4+ T cells results in the significant upregulation of pathways associated with interferon signaling, pattern recognition receptors and intracellular activation of NFκB signaling pathway. Both transcriptome analysis and specific inhibitors allowed identification of apoptosis and necrosis as mechanisms associated with the observed T cell death following exposure to EBOV. The addition of the TLR4 inhibitor CLI-095 significantly reduced CD4+ T cell death induced by GP. EBOV stimulation of primary CD4+ T cells resulted in a significant increase in secreted TNFα; inhibition of TNFα-mediated signaling events significantly reduced T cell death while inhibitors of both necrosis and apoptosis similarly reduced EBOV-induced T cell death. Lastly, we show that stimulation with EBOV or GP augments monocyte maturation as determined by an overall increase in expression levels of markers of differentiation. Subsequently, the increased rates of cellular differentiation resulted in higher rates of infection further contributing to T cell death. These results demonstrate that GP directly subverts the host's immune response by increasing the susceptibility of monocytes to EBOV infection and triggering lymphopenia through direct and indirect mechanisms.http://europepmc.org/articles/PMC5456411?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mathieu Iampietro Patrick Younan Andrew Nishida Mukta Dutta Ndongala Michel Lubaki Rodrigo I Santos Richard A Koup Michael G Katze Alexander Bukreyev |
spellingShingle |
Mathieu Iampietro Patrick Younan Andrew Nishida Mukta Dutta Ndongala Michel Lubaki Rodrigo I Santos Richard A Koup Michael G Katze Alexander Bukreyev Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection. PLoS Pathogens |
author_facet |
Mathieu Iampietro Patrick Younan Andrew Nishida Mukta Dutta Ndongala Michel Lubaki Rodrigo I Santos Richard A Koup Michael G Katze Alexander Bukreyev |
author_sort |
Mathieu Iampietro |
title |
Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection. |
title_short |
Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection. |
title_full |
Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection. |
title_fullStr |
Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection. |
title_full_unstemmed |
Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection. |
title_sort |
ebola virus glycoprotein directly triggers t lymphocyte death despite of the lack of infection. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS Pathogens |
issn |
1553-7366 1553-7374 |
publishDate |
2017-05-01 |
description |
Fatal outcomes of Ebola virus (EBOV) infections are typically preceded by a 'sepsis-like' syndrome and lymphopenia despite T cells being resistant to Ebola infection. The mechanisms that lead to T lymphocytes death remain largely unknown; however, the degree of lymphopenia is highly correlative with fatalities. Here we investigated whether the addition of EBOV or its envelope glycoprotein (GP) to isolated primary human CD4+ T cells induced cell death. We observed a significant decrease in cell viability in a GP-dependent manner, which is suggestive of a direct role of GP in T cell death. Using immunoprecipitation assays and flow cytometry, we demonstrate that EBOV directly binds to CD4+ T cells through interaction of GP with TLR4. Transcriptome analysis revealed that the addition of EBOV to CD4+ T cells results in the significant upregulation of pathways associated with interferon signaling, pattern recognition receptors and intracellular activation of NFκB signaling pathway. Both transcriptome analysis and specific inhibitors allowed identification of apoptosis and necrosis as mechanisms associated with the observed T cell death following exposure to EBOV. The addition of the TLR4 inhibitor CLI-095 significantly reduced CD4+ T cell death induced by GP. EBOV stimulation of primary CD4+ T cells resulted in a significant increase in secreted TNFα; inhibition of TNFα-mediated signaling events significantly reduced T cell death while inhibitors of both necrosis and apoptosis similarly reduced EBOV-induced T cell death. Lastly, we show that stimulation with EBOV or GP augments monocyte maturation as determined by an overall increase in expression levels of markers of differentiation. Subsequently, the increased rates of cellular differentiation resulted in higher rates of infection further contributing to T cell death. These results demonstrate that GP directly subverts the host's immune response by increasing the susceptibility of monocytes to EBOV infection and triggering lymphopenia through direct and indirect mechanisms. |
url |
http://europepmc.org/articles/PMC5456411?pdf=render |
work_keys_str_mv |
AT mathieuiampietro ebolavirusglycoproteindirectlytriggerstlymphocytedeathdespiteofthelackofinfection AT patrickyounan ebolavirusglycoproteindirectlytriggerstlymphocytedeathdespiteofthelackofinfection AT andrewnishida ebolavirusglycoproteindirectlytriggerstlymphocytedeathdespiteofthelackofinfection AT muktadutta ebolavirusglycoproteindirectlytriggerstlymphocytedeathdespiteofthelackofinfection AT ndongalamichellubaki ebolavirusglycoproteindirectlytriggerstlymphocytedeathdespiteofthelackofinfection AT rodrigoisantos ebolavirusglycoproteindirectlytriggerstlymphocytedeathdespiteofthelackofinfection AT richardakoup ebolavirusglycoproteindirectlytriggerstlymphocytedeathdespiteofthelackofinfection AT michaelgkatze ebolavirusglycoproteindirectlytriggerstlymphocytedeathdespiteofthelackofinfection AT alexanderbukreyev ebolavirusglycoproteindirectlytriggerstlymphocytedeathdespiteofthelackofinfection |
_version_ |
1724872506940063744 |