Identification of Rubisco rbcL and rbcS in Camellia oleifera and Their Potential as Molecular Markers for Selection of High Tea Oil Cultivars

Tea oil derived from seeds of Camellia oleifera Abel. is a high-quality edible oil in China. This study isolated full-length cDNAs of Rubisco subunits rbcL and rbcS from C. oleifera. The rbcL has 1,522 bp with a 1,425 bp coding region, encoding 475 amino acids; and the rbcS has 841 bp containing a 5...

Full description

Bibliographic Details
Main Authors: Yongzhong eChen, Baoming eWang, Jianjun eChen, Xiangnan eWang, Rui eWang, Shaofeng ePeng, Longsheng eChen, Li eMa, Jian eLuo
Format: Article
Language:English
Published: Frontiers Media S.A. 2015-03-01
Series:Frontiers in Plant Science
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fpls.2015.00189/full
id doaj-afd2f7e8498c4c1abbc0b8194aca037c
record_format Article
spelling doaj-afd2f7e8498c4c1abbc0b8194aca037c2020-11-24T22:57:42ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2015-03-01610.3389/fpls.2015.00189131993Identification of Rubisco rbcL and rbcS in Camellia oleifera and Their Potential as Molecular Markers for Selection of High Tea Oil CultivarsYongzhong eChen0Baoming eWang1Jianjun eChen2Xiangnan eWang3Rui eWang4Shaofeng ePeng5Longsheng eChen6Li eMa7Jian eLuo8Hunan Academy of ForestryHunan Academy of ForestryUniversity of FloridaHunan Academy of ForestryHunan Academy of ForestryHunan Academy of ForestryHunan Academy of ForestryHunan Academy of ForestryHunan Academy of ForestryTea oil derived from seeds of Camellia oleifera Abel. is a high-quality edible oil in China. This study isolated full-length cDNAs of Rubisco subunits rbcL and rbcS from C. oleifera. The rbcL has 1,522 bp with a 1,425 bp coding region, encoding 475 amino acids; and the rbcS has 841 bp containing a 528 bp coding region, encoding 176 amino acids. The expression level of the two genes, designated as Co-rbcL and Co-rbcS, was determined in three C. oleifera cultivars: Hengchong 8, Xianglin 1, and Xianglin 14 whose annual oil yields were 546.9, 591.4, and 657.7 kg ha-1, respectively. The Co-rbcL expression in ‘Xianglin 14’ was significantly higher than ‘Xianglin 1’, and ‘Xianglin 1’ was greater than ‘Hengchong 89’. The expression levels of Co-rbcS in ‘Xianglin 1’ and ‘Xianglin 14’ were similar but were significantly greater than in ‘Hengchong 89’. The net photosynthetic rate of ‘Xianglin 14’ was significantly higher than ‘Xianglin 1’, and ‘Xianglin 1’ was higher than ‘Hengchong 89’. Pearson’s correlation analysis showed that seed yields and oil yields were highly correlated with the expression level of Co-rbcL at P  0.001 level, and the expression of Co-rbcS was correlated with oil yield at P  0.01 level. Net photosynthetic rate was also correlated with oil yields and seed yields at P  0.001 and P  0.01 levels, respectively. Our results suggest that Co-rbcS and Co-rbcL in particular could potentially be molecular markers for early selection of high oil yield cultivars. In combination with the measurement of net photosynthetic rates, the early identification of potential high oil production cultivars would significantly shorten plant breeding time and increase breeding efficiency.http://journal.frontiersin.org/Journal/10.3389/fpls.2015.00189/fullPhotosynthesisRubiscoRBCLRBCsCamellia oilCamellia oleifera
collection DOAJ
language English
format Article
sources DOAJ
author Yongzhong eChen
Baoming eWang
Jianjun eChen
Xiangnan eWang
Rui eWang
Shaofeng ePeng
Longsheng eChen
Li eMa
Jian eLuo
spellingShingle Yongzhong eChen
Baoming eWang
Jianjun eChen
Xiangnan eWang
Rui eWang
Shaofeng ePeng
Longsheng eChen
Li eMa
Jian eLuo
Identification of Rubisco rbcL and rbcS in Camellia oleifera and Their Potential as Molecular Markers for Selection of High Tea Oil Cultivars
Frontiers in Plant Science
Photosynthesis
Rubisco
RBCL
RBCs
Camellia oil
Camellia oleifera
author_facet Yongzhong eChen
Baoming eWang
Jianjun eChen
Xiangnan eWang
Rui eWang
Shaofeng ePeng
Longsheng eChen
Li eMa
Jian eLuo
author_sort Yongzhong eChen
title Identification of Rubisco rbcL and rbcS in Camellia oleifera and Their Potential as Molecular Markers for Selection of High Tea Oil Cultivars
title_short Identification of Rubisco rbcL and rbcS in Camellia oleifera and Their Potential as Molecular Markers for Selection of High Tea Oil Cultivars
title_full Identification of Rubisco rbcL and rbcS in Camellia oleifera and Their Potential as Molecular Markers for Selection of High Tea Oil Cultivars
title_fullStr Identification of Rubisco rbcL and rbcS in Camellia oleifera and Their Potential as Molecular Markers for Selection of High Tea Oil Cultivars
title_full_unstemmed Identification of Rubisco rbcL and rbcS in Camellia oleifera and Their Potential as Molecular Markers for Selection of High Tea Oil Cultivars
title_sort identification of rubisco rbcl and rbcs in camellia oleifera and their potential as molecular markers for selection of high tea oil cultivars
publisher Frontiers Media S.A.
series Frontiers in Plant Science
issn 1664-462X
publishDate 2015-03-01
description Tea oil derived from seeds of Camellia oleifera Abel. is a high-quality edible oil in China. This study isolated full-length cDNAs of Rubisco subunits rbcL and rbcS from C. oleifera. The rbcL has 1,522 bp with a 1,425 bp coding region, encoding 475 amino acids; and the rbcS has 841 bp containing a 528 bp coding region, encoding 176 amino acids. The expression level of the two genes, designated as Co-rbcL and Co-rbcS, was determined in three C. oleifera cultivars: Hengchong 8, Xianglin 1, and Xianglin 14 whose annual oil yields were 546.9, 591.4, and 657.7 kg ha-1, respectively. The Co-rbcL expression in ‘Xianglin 14’ was significantly higher than ‘Xianglin 1’, and ‘Xianglin 1’ was greater than ‘Hengchong 89’. The expression levels of Co-rbcS in ‘Xianglin 1’ and ‘Xianglin 14’ were similar but were significantly greater than in ‘Hengchong 89’. The net photosynthetic rate of ‘Xianglin 14’ was significantly higher than ‘Xianglin 1’, and ‘Xianglin 1’ was higher than ‘Hengchong 89’. Pearson’s correlation analysis showed that seed yields and oil yields were highly correlated with the expression level of Co-rbcL at P  0.001 level, and the expression of Co-rbcS was correlated with oil yield at P  0.01 level. Net photosynthetic rate was also correlated with oil yields and seed yields at P  0.001 and P  0.01 levels, respectively. Our results suggest that Co-rbcS and Co-rbcL in particular could potentially be molecular markers for early selection of high oil yield cultivars. In combination with the measurement of net photosynthetic rates, the early identification of potential high oil production cultivars would significantly shorten plant breeding time and increase breeding efficiency.
topic Photosynthesis
Rubisco
RBCL
RBCs
Camellia oil
Camellia oleifera
url http://journal.frontiersin.org/Journal/10.3389/fpls.2015.00189/full
work_keys_str_mv AT yongzhongechen identificationofrubiscorbclandrbcsincamelliaoleiferaandtheirpotentialasmolecularmarkersforselectionofhighteaoilcultivars
AT baomingewang identificationofrubiscorbclandrbcsincamelliaoleiferaandtheirpotentialasmolecularmarkersforselectionofhighteaoilcultivars
AT jianjunechen identificationofrubiscorbclandrbcsincamelliaoleiferaandtheirpotentialasmolecularmarkersforselectionofhighteaoilcultivars
AT xiangnanewang identificationofrubiscorbclandrbcsincamelliaoleiferaandtheirpotentialasmolecularmarkersforselectionofhighteaoilcultivars
AT ruiewang identificationofrubiscorbclandrbcsincamelliaoleiferaandtheirpotentialasmolecularmarkersforselectionofhighteaoilcultivars
AT shaofengepeng identificationofrubiscorbclandrbcsincamelliaoleiferaandtheirpotentialasmolecularmarkersforselectionofhighteaoilcultivars
AT longshengechen identificationofrubiscorbclandrbcsincamelliaoleiferaandtheirpotentialasmolecularmarkersforselectionofhighteaoilcultivars
AT liema identificationofrubiscorbclandrbcsincamelliaoleiferaandtheirpotentialasmolecularmarkersforselectionofhighteaoilcultivars
AT jianeluo identificationofrubiscorbclandrbcsincamelliaoleiferaandtheirpotentialasmolecularmarkersforselectionofhighteaoilcultivars
_version_ 1725649577623683072