Sirt6 regulates efficiency of mouse somatic reprogramming and maintenance of pluripotency

Abstract Background Mouse somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by defined factors known to regulate pluripotency, including Oct4, Sox2, Klf4, and c-Myc. It has been reported that Sirtuin 6 (Sirt6), a member of the sirtuin family of NAD+-dependent protein deac...

Full description

Bibliographic Details
Main Authors: Peng Xu, Ting-ting Wang, Xiu-zhen Liu, Nan-Yu Wang, Li-hong Sun, Zhu-qin Zhang, Hou-zao Chen, Xiang Lv, Yue Huang, De-Pei Liu
Format: Article
Language:English
Published: BMC 2019-01-01
Series:Stem Cell Research & Therapy
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13287-018-1109-5
Description
Summary:Abstract Background Mouse somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by defined factors known to regulate pluripotency, including Oct4, Sox2, Klf4, and c-Myc. It has been reported that Sirtuin 6 (Sirt6), a member of the sirtuin family of NAD+-dependent protein deacetylases, is involved in embryonic stem cell differentiation. However, whether and how Sirt6 influences epigenetic reprogramming remains unknown. Methods Mouse embryonic fibroblasts isolated from transgenic Oct4-GFP reporter mice with or without Sirt6 were used for reprogramming by Yamanaka factors. Alkaline phosphatase-positive and OCT4-GFP-positive colony were counted to calculate reprogramming efficiency. OP9 feeder cell co-culture system was used to measure the hematopoietic differentiation from mouse ES and iPS cells. RNA sequencing was measured to identify the differential expressed genes due to loss of Sirt6 in somatic and pluripotent cells. Results In this study, we provide evidence that Sirt6 is involved in mouse somatic reprogramming. We found that loss of function of Sirt6 could significantly decrease reprogramming efficiency. Furthermore, we showed that Sirt6-null iPS-like cell line has intrinsically a differentiation defect even though the establishment of normal self-renewal. Particularly, by performing transcriptome analysis, we observed that several pluripotent transcriptional factors increase in knockout cell line, which explains the underlying loss of pluripotency in Sirt6-null iPS-like cell line. Conclusions Taken together, we have identified a new regulatory role of Sirt6 in reprogramming and maintenance of pluripotency.
ISSN:1757-6512