A fast parameterized gait planning method for a lower-limb exoskeleton robot

In order to meet requirements of diverse activities of exoskeleton robot in practical application, a dynamic motion planning system is proposed using a fast parameterized gait planning method in this article. This method can plan the required gait data by adaptively adjusting very few parameters acc...

Full description

Bibliographic Details
Main Authors: Hao Ren, Wanfeng Shang, Niannian Li, Xinyu Wu
Format: Article
Language:English
Published: SAGE Publishing 2020-01-01
Series:International Journal of Advanced Robotic Systems
Online Access:https://doi.org/10.1177/1729881419893221
Description
Summary:In order to meet requirements of diverse activities of exoskeleton robot in practical application, a dynamic motion planning system is proposed using a fast parameterized gait planning method in this article. This method can plan the required gait data by adaptively adjusting very few parameters according to different application requirements. The inverted pendulum model is used to ensure the sagittal stability of the robot in the planning process. And this article specifies the end location of robot and iterates the associated joint angles by inverse kinematics. The gait trajectories generated by the proposed method are applied to the lightweight lower-limb exoskeleton robot. The results demonstrate that the trajectories of gait can be online generated smoothly and correctly, meanwhile every variable step can be satisfied as expected.
ISSN:1729-8814