Leveraging TCGA gene expression data to build predictive models for cancer drug response
Abstract Background Machine learning has been utilized to predict cancer drug response from multi-omics data generated from sensitivities of cancer cell lines to different therapeutic compounds. Here, we build machine learning models using gene expression data from patients’ primary tumor tissues to...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2020-09-01
|
Series: | BMC Bioinformatics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12859-020-03690-4 |