Summary: | Because the motor and reducer of the conventional tandem welding robot are installed at the revolute joint, the robot has large rotational inertia and long residual vibration time. However, due to the limitation of workspace and other reasons, the current parallel robot is not suitable for all series welding robots. Therefore, based on the concept of "multi-degree-of-freedom controllable mechanism", a new controllable mechanism welding robot is proposed in this paper. The driving motor and reducer, which have great influence on the main and branch chain of the welding robot, are installed on the frame. The advantage of this design is that the inertia of the robot mechanism is significantly reduced, and its dynamic performance is improved. The position errors of the end members of the welding robot moving along the circle, as well as the angle errors of each joints under the circle movements are analysed.
|