Phenolic Extract from Moringa oleifera Leaves Inhibits Key Enzymes Linked to Erectile Dysfunction and Oxidative Stress in Rats’ Penile Tissues

This study was designed to determine the antioxidant properties and inhibitory effects of extract from Moringa oleifera leaves on angiotensin-I-converting enzyme (ACE) and arginase activities in vitro. The extract was prepared and phenolic (total phenols and flavonoid) contents, radical (nitric oxid...

Full description

Bibliographic Details
Main Authors: Ganiyu Oboh, Adedayo O. Ademiluyi, Ayokunle O. Ademosun, Tosin A. Olasehinde, Sunday I. Oyeleye, Aline A. Boligon, Margareth L. Athayde
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Biochemistry Research International
Online Access:http://dx.doi.org/10.1155/2015/175950
Description
Summary:This study was designed to determine the antioxidant properties and inhibitory effects of extract from Moringa oleifera leaves on angiotensin-I-converting enzyme (ACE) and arginase activities in vitro. The extract was prepared and phenolic (total phenols and flavonoid) contents, radical (nitric oxide (NO), hydroxyl (OH)) scavenging abilities, and Fe2+-chelating ability were assessed. Characterization of the phenolic constituents was done via high performance liquid chromatography-diode array detection (HPLC-DAD) analysis. Furthermore, the effects of the extract on Fe2+-induced MDA production in rats’ penile tissue homogenate as well as its action on ACE and arginase activities were also determined. The extract scavenged NO∗, OH∗, chelated Fe2+, and inhibited MDA production in a dose-dependent pattern with IC50 values of 1.36, 0.52, and 0.38 mg/mL and 194.23 µg/mL, respectively. Gallic acid, chlorogenic acid, quercetin, and kaempferol were the most abundant phenolic compounds identified in the leaf extract. The extract also inhibited ACE and arginase activities in a dose-dependent pattern and their IC50 values were 303.03 and 159.59 µg/mL, respectively. The phenolic contents, inhibition of ACE, arginase, and Fe2+-induced MDA production, and radical (OH∗, NO∗) scavenging and Fe2+-chelating abilities could be some of the possible mechanisms by which M. oleifera leaves could be used in the treatment and/or management of erectile dysfunction.
ISSN:2090-2247
2090-2255