A Multi-Index Generative Adversarial Network for Tool Wear Detection with Imbalanced Data
The scarcity of abnormal data leads to imbalanced data in the field of monitoring tool wear conditions. In this paper, a novel multi-index generative adversarial network (MI-GAN) is proposed to detect the tool wear conditions subject to imbalanced signal data. First, the generator in the MI-GAN is t...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2020-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2020/5831632 |