Full-length Plasmodium falciparum myosin A and essential light chain PfELC structures provide new anti-malarial targets

Parasites from the genus Plasmodium are the causative agents of malaria. The mobility, infectivity, and ultimately pathogenesis of Plasmodium falciparum rely on a macromolecular complex, called the glideosome. At the core of the glideosome is an essential and divergent Myosin A motor (PfMyoA), a fir...

Full description

Bibliographic Details
Main Authors: Dihia Moussaoui, James P Robblee, Daniel Auguin, Elena B Krementsova, Silvia Haase, Thomas CA Blake, Jake Baum, Julien Robert-Paganin, Kathleen M Trybus, Anne Houdusse
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2020-10-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/60581
id doaj-b65c35d6ff964fcd82d2f940374cef22
record_format Article
spelling doaj-b65c35d6ff964fcd82d2f940374cef222021-05-05T21:36:11ZengeLife Sciences Publications LtdeLife2050-084X2020-10-01910.7554/eLife.60581Full-length Plasmodium falciparum myosin A and essential light chain PfELC structures provide new anti-malarial targetsDihia Moussaoui0https://orcid.org/0000-0002-1605-9619James P Robblee1Daniel Auguin2Elena B Krementsova3Silvia Haase4Thomas CA Blake5https://orcid.org/0000-0002-8534-0025Jake Baum6https://orcid.org/0000-0002-0275-352XJulien Robert-Paganin7https://orcid.org/0000-0001-6102-2025Kathleen M Trybus8https://orcid.org/0000-0002-5583-8500Anne Houdusse9https://orcid.org/0000-0002-8566-0336Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, Paris, FranceDepartment of Molecular Physiology and Biophysics, University of Vermont, Burlington, United StatesLaboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d’Orléans, INRAE, USC1328, Orléans, FranceDepartment of Molecular Physiology and Biophysics, University of Vermont, Burlington, United StatesDepartment of Life Sciences, Imperial College London, South Kensington, London, United KingdomDepartment of Life Sciences, Imperial College London, South Kensington, London, United KingdomDepartment of Life Sciences, Imperial College London, South Kensington, London, United KingdomStructural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, Paris, FranceDepartment of Molecular Physiology and Biophysics, University of Vermont, Burlington, United StatesStructural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, Paris, FranceParasites from the genus Plasmodium are the causative agents of malaria. The mobility, infectivity, and ultimately pathogenesis of Plasmodium falciparum rely on a macromolecular complex, called the glideosome. At the core of the glideosome is an essential and divergent Myosin A motor (PfMyoA), a first order drug target against malaria. Here, we present the full-length structure of PfMyoA in two states of its motor cycle. We report novel interactions that are essential for motor priming and the mode of recognition of its two light chains (PfELC and MTIP) by two degenerate IQ motifs. Kinetic and motility assays using PfMyoA variants, along with molecular dynamics, demonstrate how specific priming and atypical sequence adaptations tune the motor’s mechano-chemical properties. Supported by evidence for an essential role of the PfELC in malaria pathogenesis, these structures provide a blueprint for the design of future anti-malarials targeting both the glideosome motor and its regulatory elements.https://elifesciences.org/articles/60581malariamliding motilityerythrocytes invasionmyosin APfELCantimalarial drugs
collection DOAJ
language English
format Article
sources DOAJ
author Dihia Moussaoui
James P Robblee
Daniel Auguin
Elena B Krementsova
Silvia Haase
Thomas CA Blake
Jake Baum
Julien Robert-Paganin
Kathleen M Trybus
Anne Houdusse
spellingShingle Dihia Moussaoui
James P Robblee
Daniel Auguin
Elena B Krementsova
Silvia Haase
Thomas CA Blake
Jake Baum
Julien Robert-Paganin
Kathleen M Trybus
Anne Houdusse
Full-length Plasmodium falciparum myosin A and essential light chain PfELC structures provide new anti-malarial targets
eLife
malaria
mliding motility
erythrocytes invasion
myosin A
PfELC
antimalarial drugs
author_facet Dihia Moussaoui
James P Robblee
Daniel Auguin
Elena B Krementsova
Silvia Haase
Thomas CA Blake
Jake Baum
Julien Robert-Paganin
Kathleen M Trybus
Anne Houdusse
author_sort Dihia Moussaoui
title Full-length Plasmodium falciparum myosin A and essential light chain PfELC structures provide new anti-malarial targets
title_short Full-length Plasmodium falciparum myosin A and essential light chain PfELC structures provide new anti-malarial targets
title_full Full-length Plasmodium falciparum myosin A and essential light chain PfELC structures provide new anti-malarial targets
title_fullStr Full-length Plasmodium falciparum myosin A and essential light chain PfELC structures provide new anti-malarial targets
title_full_unstemmed Full-length Plasmodium falciparum myosin A and essential light chain PfELC structures provide new anti-malarial targets
title_sort full-length plasmodium falciparum myosin a and essential light chain pfelc structures provide new anti-malarial targets
publisher eLife Sciences Publications Ltd
series eLife
issn 2050-084X
publishDate 2020-10-01
description Parasites from the genus Plasmodium are the causative agents of malaria. The mobility, infectivity, and ultimately pathogenesis of Plasmodium falciparum rely on a macromolecular complex, called the glideosome. At the core of the glideosome is an essential and divergent Myosin A motor (PfMyoA), a first order drug target against malaria. Here, we present the full-length structure of PfMyoA in two states of its motor cycle. We report novel interactions that are essential for motor priming and the mode of recognition of its two light chains (PfELC and MTIP) by two degenerate IQ motifs. Kinetic and motility assays using PfMyoA variants, along with molecular dynamics, demonstrate how specific priming and atypical sequence adaptations tune the motor’s mechano-chemical properties. Supported by evidence for an essential role of the PfELC in malaria pathogenesis, these structures provide a blueprint for the design of future anti-malarials targeting both the glideosome motor and its regulatory elements.
topic malaria
mliding motility
erythrocytes invasion
myosin A
PfELC
antimalarial drugs
url https://elifesciences.org/articles/60581
work_keys_str_mv AT dihiamoussaoui fulllengthplasmodiumfalciparummyosinaandessentiallightchainpfelcstructuresprovidenewantimalarialtargets
AT jamesprobblee fulllengthplasmodiumfalciparummyosinaandessentiallightchainpfelcstructuresprovidenewantimalarialtargets
AT danielauguin fulllengthplasmodiumfalciparummyosinaandessentiallightchainpfelcstructuresprovidenewantimalarialtargets
AT elenabkrementsova fulllengthplasmodiumfalciparummyosinaandessentiallightchainpfelcstructuresprovidenewantimalarialtargets
AT silviahaase fulllengthplasmodiumfalciparummyosinaandessentiallightchainpfelcstructuresprovidenewantimalarialtargets
AT thomascablake fulllengthplasmodiumfalciparummyosinaandessentiallightchainpfelcstructuresprovidenewantimalarialtargets
AT jakebaum fulllengthplasmodiumfalciparummyosinaandessentiallightchainpfelcstructuresprovidenewantimalarialtargets
AT julienrobertpaganin fulllengthplasmodiumfalciparummyosinaandessentiallightchainpfelcstructuresprovidenewantimalarialtargets
AT kathleenmtrybus fulllengthplasmodiumfalciparummyosinaandessentiallightchainpfelcstructuresprovidenewantimalarialtargets
AT annehoudusse fulllengthplasmodiumfalciparummyosinaandessentiallightchainpfelcstructuresprovidenewantimalarialtargets
_version_ 1721458034248515584